JEE MAIN - Mathematics (2025 - 7th April Morning Shift - No. 16)

If the area of the region bounded by the curves $y=4-\frac{x^2}{4}$ and $y=\frac{x-4}{2}$ is equal to $\alpha$, then $6 \alpha$. equals
210
250
240
220

Explanation

$y=4-\frac{x^2}{4}$ and $y=\frac{x-4}{2}$

JEE Main 2025 (Online) 7th April Morning Shift Mathematics - Area Under The Curves Question 5 English Explanation

$$\begin{aligned} & \text { Area }=\int_\limits{-6}^4\left(4-\frac{x^2}{4}-\frac{x}{2}+2\right) d x \\ & =\left[6 x-\frac{x^3}{12}-\frac{x^2}{4}\right]_{-6}^4 \\ & =6(4+6)-\left(\frac{64}{12}+\frac{216}{12}\right)-\left(\frac{16}{4}-\frac{36}{4}\right) \\ & =60-\frac{70}{3}+5 \\ & \alpha=\frac{125}{3} \\ & 6 \alpha=6 \times \frac{125}{3}=250 \end{aligned}$$

Comments (0)

Advertisement