JEE MAIN - Mathematics (2025 - 7th April Morning Shift - No. 3)
Let P be the parabola, whose focus is $(-2,1)$ and directrix is $2 x+y+2=0$. Then the sum of the ordinates of the points on P, whose abscissa is $-$2, is
$\frac{5}{2}$
$\frac{3}{2}$
$\frac{3}{4}$
$\frac{1}{4}$
Explanation
$$\begin{aligned} &\begin{aligned} & P M=P F \\ & \Rightarrow \quad \frac{|2 x+y+2|}{\sqrt{5}}=\sqrt{(x+2)^2+(y-1)^2} \end{aligned}\\ &\text { Now abscissa of } P \text { is }-2 \Rightarrow x=-2\\ &\begin{aligned} & \left|\frac{y-2}{\sqrt{5}}\right|=\sqrt{0+(y-1)^2} \Rightarrow \frac{|y-2|}{\sqrt{5}}=|y-1| \\ & \Rightarrow(y-2)^2=5(y-1)^2 \\ & \Rightarrow 4 y^2-6 y+1=0 \Rightarrow \text { Sum of ordinates } \\ & =-\left(\frac{-6}{4}\right)=\frac{3}{2} \end{aligned} \end{aligned}$$
Comments (0)
