JEE MAIN - Mathematics (2023 - 1st February Morning Shift)

1
The value of $$\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots .+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$$ is :
Answer
(D)
$$\frac{2^{50}}{51 !}$$
2
Let $$S$$ be the set of all solutions of the equation $$\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$$. Then $$\sum_\limits{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$$ is equal to :
Answer
(D)
None
3
Let $$R$$ be a relation on $$\mathbb{R}$$, given by $$R=\{(a, b): 3 a-3 b+\sqrt{7}$$ is an irrational number $$\}$$. Then $$R$$ is
Answer
(D)
reflexive but neither symmetric nor transitive
4
The shortest distance between the lines

$${{x - 5} \over 1} = {{y - 2} \over 2} = {{z - 4} \over { - 3}}$$ and

$${{x + 3} \over 1} = {{y + 5} \over 4} = {{z - 1} \over { - 5}}$$ is :
Answer
(D)
$$6\sqrt 3 $$
5

Let $$S$$ denote the set of all real values of $$\lambda$$ such that the system of equations

$$\lambda x+y+z=1$$

$$x+\lambda y+z=1$$

$$x+y+\lambda z=1$$

is inconsistent, then $$\sum_\limits{\lambda \in S}\left(|\lambda|^{2}+|\lambda|\right)$$ is equal to

Answer
(D)
6
6
Let $$S = \left\{ {x:x \in \mathbb{R}\,\mathrm{and}\,{{(\sqrt 3 + \sqrt 2 )}^{{x^2} - 4}} + {{(\sqrt 3 - \sqrt 2 )}^{{x^2} - 4}} = 10} \right\}$$. Then $$n(S)$$ is equal to
Answer
(B)
4
7
If the center and radius of the circle $$\left| {{{z - 2} \over {z - 3}}} \right| = 2$$ are respectively $$(\alpha,\beta)$$ and $$\gamma$$, then $$3(\alpha+\beta+\gamma)$$ is equal to :
Answer
(A)
12
8
The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is :
Answer
(D)
1072
9
Let $$f(x) = 2x + {\tan ^{ - 1}}x$$ and $$g(x) = {\log _e}(\sqrt {1 + {x^2}} + x),x \in [0,3]$$. Then
Answer
(D)
$$\max f(x) > \max g(x)$$
10
Let $$f(x) = \left| {\matrix{ {1 + {{\sin }^2}x} & {{{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {1 + {{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \sin 2x} \cr } } \right|,\,x \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$. If $$\alpha$$ and $$\beta$$ respectively are the maximum and the minimum values of $$f$$, then
Answer
(B)
$${\beta ^2} - 2\sqrt \alpha = {{19} \over 4}$$
11

The area enclosed by the closed curve $$\mathrm{C}$$ given by the differential equation

$$\frac{d y}{d x}+\frac{x+a}{y-2}=0, y(1)=0$$ is $$4 \pi$$.

Let $$P$$ and $$Q$$ be the points of intersection of the curve $$\mathrm{C}$$ and the $$y$$-axis. If normals at $$P$$ and $$Q$$ on the curve $$\mathrm{C}$$ intersect $$x$$-axis at points $$R$$ and $$S$$ respectively, then the length of the line segment $$R S$$ is :

Answer
(A)
$$\frac{4 \sqrt{3}}{3}$$
12
If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is $$(\alpha,\beta)$$, then the quadratic equation whose roots are $$\alpha+4\beta$$ and $$4\alpha+\beta$$, is :
Answer
(A)
$$x^2-20x+99=0$$
13
If $$y=y(x)$$ is the solution curve of the differential equation

$$\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$$, then $$y\left(\frac{\pi}{6}\right)$$ is equal to
Answer
(D)
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$
14
If $$\int_\limits{0}^{1}\left(x^{21}+x^{14}+x^{7}\right)\left(2 x^{14}+3 x^{7}+6\right)^{1 / 7} d x=\frac{1}{l}(11)^{m / n}$$ where $$l, m, n \in \mathbb{N}, m$$ and $$n$$ are coprime then $$l+m+n$$ is equal to ____________.
Answer
63
15
Let $$a_{1}=8, a_{2}, a_{3}, \ldots, a_{n}$$ be an A.P. If the sum of its first four terms is 50 and the sum of its last four terms is 170 , then the product of its middle two terms is ___________.
Answer
754
16
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(x)+f(x)=\int_\limits{0}^{2} f(t) d t$$. If $$f(0)=e^{-2}$$, then $$2 f(0)-f(2)$$ is equal to ____________.
Answer
1
17
The remainder, when $$19^{200}+23^{200}$$ is divided by 49 , is ___________.
Answer
29
18
The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7, is ____________.
Answer
514
19
The number of words, with or without meaning, that can be formed using all the letters of the word ASSASSINATION so that the vowels occur together, is ___________.
Answer
50400
20
Let $$A$$ be the area bounded by the curve $$y=x|x-3|$$, the $$x$$-axis and the ordinates $$x=-1$$ and $$x=2$$. Then $$12 A$$ is equal to ____________.
Answer
62
21
$$A(2,6,2), B(-4,0, \lambda), C(2,3,-1)$$ and $$D(4,5,0),|\lambda| \leq 5$$ are the vertices of a quadrilateral $$A B C D$$. If its area is 18 square units, then $$5-6 \lambda$$ is equal to __________.
Answer
11
22
If $$f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(2)$$ and $$g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x)$$, then the value of $$f(4)-g(4)$$ is equal to ____________.
Answer
14