JEE MAIN - Mathematics (2023 - 1st February Morning Shift - No. 22)
If $$f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(2)$$ and $$g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x)$$, then the value of $$f(4)-g(4)$$ is equal to ____________.
Answer
14
Explanation
Let $g^{\prime}(1)=a$ and $g^{\prime \prime}(2)=b$
$\Rightarrow f(x)=x^{2}+a x+b$
Now, $f(1)=1+a+b ; f^{\prime}(x)=2 x+a ; f^{\prime \prime}(x)=2$
$g(x)=(1+a+b) x^{2}+x(2 x+a)+2$
$\Rightarrow g(x)=(a+b+3) x^{2}+a x+2$
$\Rightarrow g^{\prime}(x)=2 x(a+b+3)+a \Rightarrow g^{\prime}(1)=2(a+b+3)$$+a=a$
$\Rightarrow a+b+3=0$ .......(1)
$g^{\prime \prime}(x)=2(a+b+3)=b$
$\Rightarrow 2 a+b+6=0$ ........(2)
Solving (i) and (ii), we get
$a=-3$ and $b=0$
$f(x)=x^{2}-3 x$ and $g(x)=-3 x+2$
$f(4)=4$ and $g(4)=-12+2=-10$
$\Rightarrow f(4)-g(4)=16-2=14$
$\Rightarrow f(x)=x^{2}+a x+b$
Now, $f(1)=1+a+b ; f^{\prime}(x)=2 x+a ; f^{\prime \prime}(x)=2$
$g(x)=(1+a+b) x^{2}+x(2 x+a)+2$
$\Rightarrow g(x)=(a+b+3) x^{2}+a x+2$
$\Rightarrow g^{\prime}(x)=2 x(a+b+3)+a \Rightarrow g^{\prime}(1)=2(a+b+3)$$+a=a$
$\Rightarrow a+b+3=0$ .......(1)
$g^{\prime \prime}(x)=2(a+b+3)=b$
$\Rightarrow 2 a+b+6=0$ ........(2)
Solving (i) and (ii), we get
$a=-3$ and $b=0$
$f(x)=x^{2}-3 x$ and $g(x)=-3 x+2$
$f(4)=4$ and $g(4)=-12+2=-10$
$\Rightarrow f(4)-g(4)=16-2=14$
Comments (0)
