JEE MAIN - Mathematics (2023 - 1st February Morning Shift - No. 2)

Let $$S$$ be the set of all solutions of the equation $$\cos ^{-1}(2 x)-2 \cos ^{-1}\left(\sqrt{1-x^{2}}\right)=\pi, x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$$. Then $$\sum_\limits{x \in S} 2 \sin ^{-1}\left(x^{2}-1\right)$$ is equal to :
$$\pi-2 \sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$$
$$\pi-\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$$
$$\frac{-2 \pi}{3}$$
None

Explanation

$$ \begin{aligned} & \cos ^{-1}(2 \mathrm{x})=\pi+2 \cos ^{-1} \sqrt{1-\mathrm{x}^2} \\\\ & \text { Since } \cos ^{-1}(2 \mathrm{x}) \in[0, \pi] \\\\ & \text { R.H.S. } \geq \pi \\\\ & \pi+2 \cos ^{-1} \sqrt{1-\mathrm{x}^2}=\pi \\\\ & \Rightarrow \cos ^{-1} \sqrt{1-\mathrm{x}^2}=0 \\\\ & \Rightarrow \sqrt{1-\mathrm{x}^2}=1 \\\\ & \Rightarrow \mathrm{x}=0 \\\\ & \text { but at } \mathrm{x}=0 \\\\ & \cos ^{-1}(2 \mathrm{x})=\cos ^{-1}(0)=\frac{\pi}{2} \end{aligned} $$

$$ \therefore $$ No solution possible for given equation.

$$ \mathrm{x} \in \phi $$

Comments (0)

Advertisement