JEE MAIN - Mathematics (2023 - 1st February Morning Shift - No. 18)
The number of 3-digit numbers, that are divisible by either 2 or 3 but not divisible by 7, is ____________.
Answer
514
Explanation
_1st_February_Morning_Shift_en_18_1.png)
$A=$ Numbers divisible by 2
$B=$ Numbers divisible by 3
$C=$ Numbers divisible by 7
$n(A \cup B)=n(A)+n(B)-n(A \cap B)$
$=n(2)+n(3)-n(6)$
$n(A)=n(2)=100,102 \ldots ., 998=450$
$n(B)=n(3)=102,105, \ldots ., 999=30$
$n(A \cap B)=n(6)=102,108, \ldots ., 996=150$
$n(2$ or 3$)=450+300-150=600$
Now,
$n(\mathrm{~A} \cap C)=n(14)=112,126, \ldots ., 994=64$
$n(A \cap B \cap C)=n(42)=126,168, \ldots ., 966=21$
$n(B \cap C)=n(21)=105,126, \ldots \ldots, 987,=43$
$n(2$ or 3 not by 7$)=600-[64+43-21]$
$=514$
Comments (0)
