JEE MAIN - Mathematics (2023 - 1st February Morning Shift - No. 13)

If $$y=y(x)$$ is the solution curve of the differential equation

$$\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$$, then $$y\left(\frac{\pi}{6}\right)$$ is equal to
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$$
$$\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2 \sqrt{3}}{e}\right)$$
$$\frac{\pi}{12}+\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$
$$\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _{e}\left(\frac{2}{e \sqrt{3}}\right)$$

Explanation

$\frac{d y}{d x}+y \tan x=x \sec x$

$\therefore $ I.F $=e^{\int \tan x d x}=\sec x$

$\Rightarrow y \sec x=\int x \sec ^{2} x d x$

$\Rightarrow y \sec x=x \tan x-\ln |\sec x|+c$

Given, $$ y(0)=1 $$

$\Rightarrow 1=c$

$$ \therefore $$ $ y \sec x=x \tan x-\ln |\sec x|+1$

$\Rightarrow y=x \sin x-\cos x \ln |\sec x|+cosx$

Now, at $x=\pi / 6$, we have

$$ \begin{aligned} & y=\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _e \frac{2}{\sqrt{3}}+\frac{\sqrt{3}}{2} \\\\ & =\frac{\pi}{12}-\frac{\sqrt{3}}{2}\left[\log _e \frac{2}{\sqrt{3}}-\log _e e\right]\\\\ &=\frac{\pi}{12}-\frac{\sqrt{3}}{2} \log _e\left(\frac{2}{e \sqrt{3}}\right) \end{aligned} $$

Comments (0)

Advertisement