JEE MAIN - Mathematics (2023 - 1st February Morning Shift - No. 20)

Let $$A$$ be the area bounded by the curve $$y=x|x-3|$$, the $$x$$-axis and the ordinates $$x=-1$$ and $$x=2$$. Then $$12 A$$ is equal to ____________.
Answer
62

Explanation

JEE Main 2023 (Online) 1st February Morning Shift Mathematics - Area Under The Curves Question 56 English Explanation

$=\int\limits_{-1}^{2}\left|3 x-x^{2}\right|$

$A=\int\limits_{-1}^{0} x^{2}-3 x d x+\int\limits_{0}^{2} 3 x-x^{2} d x$

$\left.\left.=\frac{x^{3}}{3}-\frac{3 x^{2}}{2}\right]_{-1}^{0}+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}$

$=0-\left(\frac{-1}{3}-\frac{3}{2}\right)+\left(6-\frac{8}{3}\right)-0$

$=\frac{31}{6}$

$\therefore 12 A=62$

Comments (0)

Advertisement