JEE MAIN - Mathematics (2023 - 1st February Morning Shift - No. 20)
Let $$A$$ be the area bounded by the curve $$y=x|x-3|$$, the $$x$$-axis and the ordinates $$x=-1$$ and $$x=2$$. Then $$12 A$$ is equal to ____________.
Answer
62
Explanation
_1st_February_Morning_Shift_en_20_1.png)
$=\int\limits_{-1}^{2}\left|3 x-x^{2}\right|$
$A=\int\limits_{-1}^{0} x^{2}-3 x d x+\int\limits_{0}^{2} 3 x-x^{2} d x$
$\left.\left.=\frac{x^{3}}{3}-\frac{3 x^{2}}{2}\right]_{-1}^{0}+\frac{3 x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{2}$
$=0-\left(\frac{-1}{3}-\frac{3}{2}\right)+\left(6-\frac{8}{3}\right)-0$
$=\frac{31}{6}$
$\therefore 12 A=62$
Comments (0)
