JEE Advance - Mathematics (2018 - Paper 1 Offline)
1
For a non-zero complex number z, let arg(z) denote the principal argument with $$-$$ $$\pi $$ < arg(z) $$ \le $$ $$\pi $$. Then, which of the following statement(s) is (are) FALSE?
Answer
A
B
D
2
In a $$\Delta $$PQR = 30$$^\circ $$ and the sides PQ and QR have lengths 10$$\sqrt 3 $$ and 10, respectively. Then, which of the following statement(s) is(are) TRUE?
Answer
B
C
D
3
Let P1 : 2x + y $$-$$ z = 3 and P2 : x + 2y + z = 2 be two planes. Then, which of the following statement(s) is(are) TRUE?
Answer
C
D
4
For every twice differentiable function $$f:R \to [ - 2,2]$$ with $${(f(0))^2} + {(f'(0))^2} = 85$$, which of the following statement(s) is(are) TRUE?
Answer
A
B
D
5
Let f : R $$ \to $$ R and g : R $$ \to $$ R be two non-constant differentiable functions. If f'(x) = (e(f(x) $$-$$ g(x))) g'(x) for all x $$ \in $$ R and f(1) = g(2) = 1, then which of the following statement(s) is (are) TRUE?
Answer
B
C
6
Let f : [0, $$\infty $$) $$ \to $$ R be a continuous function such that
$$f(x) = 1 - 2x + \int_0^x {{e^{x - t}}f(t)dt} $$ for all x $$ \in $$ [0, $$\infty $$). Then, which of the following statement(s) is (are) TRUE?
Answer
B
C
7
The value of $${({({\log _2}9)^2})^{{1 \over {{{\log }_2}({{\log }_2}9)}}}} \times {(\sqrt 7 )^{{1 \over {{{\log }_4}7}}}}$$ is ....................
Answer
8
8
The number of 5 digit numbers which are divisible by 4, with digits from the set {1, 2, 3, 4, 5} and the repetition of digits is allowed, is .................
Answer
625
9
Let X be the set consisting of the first 2018 terms of the arithmetic progression 1, 6, 11, ...., and Y be the set consisting of the first 2018 terms of the arithmetic progression 9, 16, 23, .... . Then, the number of elements in the set X $$ \cup $$ Y is .........
Answer
3748
10
The number of real solutions of the equation $$\eqalign{
& {\sin ^{ - 1}}\left( {\sum\limits_{i = 1}^\infty {} {x^{i + 1}} - x\sum\limits_{i = 1}^\infty {} {{\left( {{x \over 2}} \right)}^i}} \right) \cr
& = {\pi \over 2} - {\cos ^1}\left( {\sum\limits_{i = 1}^\infty {} {{\left( {{{ - x} \over 2}} \right)}^i} - \sum\limits_{i = 1}^\infty {} {{\left( { - x} \right)}^i}} \right) \cr} $$ lying in the interval $$\left( { - {1 \over 2},{1 \over 2}} \right)$$ is ........... .
(Here, the inverse trigonometric functions sin$$-$$1 x and cos$$-$$1 x assume values in $${\left[ { - {\pi \over 2},{\pi \over 2}} \right]}$$ and $${\left[ {0,\pi } \right]}$$, respectively.)
For x$$ \in $$R, let [x] be the greatest integer less than or equal to x. If $$\mathop {\lim }\limits_{n \to \infty } {y_n} = L$$, then the value of [L] is ..............
Answer
1
12
Let a and b be two unit vectors such that a . b = 0. For some x, y$$ \in $$R, let $$\overrightarrow c = x\overrightarrow a + y\overrightarrow b + \overrightarrow a \times \overrightarrow b $$. If | $$\overrightarrow c $$| = 2 and the vector c is inclined at the same angle $$\alpha $$ to both a and b, then the value of $$8{\cos ^2}\alpha $$ is ..............
Answer
3
13
Let a, b, c three non-zero real numbers such that the equation $$\sqrt 3 a\cos x + 2b\sin x = c,x \in \left[ { - {\pi \over 2},{\pi \over 2}} \right]$$, has two distinct real roots $$\alpha $$ and $$\beta $$ with $$\alpha + \beta = {\pi \over 3}$$. Then, the value of $${b \over a}$$ is ............
Answer
0.5
14
A farmer F1 has a land in the shape of a triangle with vertices at P(0, 0), Q(1, 1) and R(2, 0). From this land, a neighbouring farmer F2 takes away the region which lies between the sides PQ and a curve of the form y = xn (n > 1). If the area of the region taken away by the farmer F2 is exactly 30% of the area of $$\Delta $$PQR, then the value of n is .................
Answer
4
15
Let S be the circle in the XY-plane defined the equation x2 + y2 = 4.
Let E1E2 and F1F2 be the chords of S passing through the point P0 (1, 1) and parallel to the X-axis and the Y-axis, respectively. Let G1G2 be the chord of S passing through P0 and having slope$$-$$1. Let the tangents to S at E1 and E2 meet at E3, then tangents to S at F1 and F2 meet at F3, and the tangents to S at G1 and G2 meet at G3. Then, the points E3, F3 and G3 lie on the curve
Answer
(A)
x + y = 4
16
Let S be the circle in the XY-plane defined the equation x2 + y2 = 4.
Let P be a point on the circle S with both coordinates being positive. Let the tangent to S at P intersect the coordinate axes at the points M and N. Then, the mid-point of the line segment MN must lie on the curve
Answer
(D)
x2 + y2 = x2y2
17
There are five students S1, S2, S3, S4 and S5 in a music class and for them there are five seats R1, R2, R3, R4 and R5 arranged in a row, where initially the seat Ri is allotted to the student Si, i = 1, 2, 3, 4, 5. But, on the examination day, the five students are randomly allotted the five seats.
(There are two questions based on Paragraph "A", the question given below is one of them)
The probability that, on the examination day, the student S1 gets the previously allotted seat R1, and NONE of the remaining students gets the seat previously allotted to him/her is
Answer
(A)
$${3 \over {40}}$$
18
There are five students S1, S2, S3, S4 and S5 in a music class and for them there are five seats R1, R2, R3, R4 and R5 arranged in a row, where initially the seat Ri is allotted to the student Si, i = 1, 2, 3, 4, 5. But, on the examination day, the five students are randomly allotted the five seats.
(There are two questions based on Paragraph "A", the question given below is one of them)
For i = 1, 2, 3, 4, let Ti denote the event that the students Si and Si+1 do NOT sit adjacent to each other on the day of the examination. Then, the probability of the event $${T_1} \cap {T_2} \cap {T_3} \cap {T_4}$$ is