JEE Advance - Mathematics (2018 - Paper 1 Offline - No. 5)

Let f : R $$ \to $$ R and g : R $$ \to $$ R be two non-constant differentiable functions. If f'(x) = (e(f(x) $$-$$ g(x))) g'(x) for all x $$ \in $$ R and f(1) = g(2) = 1, then which of the following statement(s) is (are) TRUE?
f(2) < 1 $$-$$ loge 2
f(2) > 1 $$-$$ loge 2
g(1) > 1 $$-$$ loge 2
g(1) < 1 $$-$$ loge 2

Explanation

We have,

$$f'(x) = {e^{(f(x) - g(x))}}g'(x)\forall x \in R$$

$$ \Rightarrow f'(x) = {{{e^{f(x)}}} \over {{e^{g(x)}}}}g'(x)$$

$$ \Rightarrow {{f'(x)} \over {{e^{f(x)}}}} = {{g'(x)} \over {{e^{g(x)}}}}$$

$$ \Rightarrow {e^{ - f(x)}}f'(x) = {e^{ - g(x)}}g'(x)$$

On integrating both side, we get

$${e^{ - f(x)}}$$ = $${e^{ - g(x)}}$$ + C

At x = 1

$${e^{ - f(1)}}$$ = $${e^{ - g(1)}}$$ + C

$${e^{ - 1}} = {e^{ - g(1)}} + C$$ [$$ \because $$ f(1) = 1] ...(i)

At x = 2

$${e^{ - f(2)}}$$ = $${e^{ - g(2)}}$$ + C

$$ \Rightarrow $$ $${e^{ - f(2)}}$$ = $${e^{ - 1}}$$ + C [$$ \because $$ g(2) = 1] .... (ii)

From Eqs. (i) and (ii)

$${e^{ - f(2)}}$$ = $$2{e^{ - 1}}$$ $$-$$ $${{e^{ - g(1)}}}$$ ...(iii)

$$ \Rightarrow $$ $${e^{ - f(2)}}$$ > $$2{e^{ - 1}}$$

We know that, e$$-$$x is decreasing

$$ \therefore $$ $$-$$f(2) < loge 2$$-$$1

f(2) > 1 $$-$$ loge 2

$$ \Rightarrow $$ $${{e^{ - g(1)}}}$$ + $${e^{ - f(2)}}$$ = $$2{e^{ - 1}}$$ [from Eq. (iii)]

$$ \Rightarrow $$ $${{e^{ - g(1)}}}$$ < $$2{e^{ - 1}}$$ $$-$$g(1) < loge 2 $$-$$1

$$ \Rightarrow $$ g(1) >$$-$$loge 2

Comments (0)

Advertisement