JEE Advance - Mathematics (2018 - Paper 1 Offline - No. 2)

In a $$\Delta $$PQR = 30$$^\circ $$ and the sides PQ and QR have lengths 10$$\sqrt 3 $$ and 10, respectively. Then, which of the following statement(s) is(are) TRUE?
$$\angle QPR = 45^\circ $$
The area of the $$\Delta PQR$$ is $$25\sqrt 3 $$ and $$\angle QRP = 120^\circ $$
The radius of the incircle of the $$\Delta PQR$$ is $$10\sqrt 3 $$ $$-$$ 15
The area of the circumcircle of the $$\Delta PQR$$ is 100$$\pi $$

Explanation

We have,

In $$\Delta $$PQR

$$\angle PQR = 30^\circ $$

$$PQ = 10\sqrt 3 $$

$$QR = 10$$

JEE Advanced 2018 Paper 1 Offline Mathematics - Trigonometric Functions & Equations Question 11 English Explanation

By cosine rule

$$\cos 30^\circ = {{P{Q^2} + Q{R^2} - P{R^2}} \over {2PQ.QR}}$$

$$ \Rightarrow {{\sqrt 3 } \over 2} = {{300 + 100 - P{R^2}} \over {200\sqrt 3 }}$$

$$ \Rightarrow 300 = 300 + 100 - P{R^2}$$

$$ \Rightarrow PR = 10$$

Since, $$PR = QR = 10$$

$$ \therefore $$ $$\angle QPR = 30^\circ $$ and $$\angle QRP = 120^\circ $$

Area of $$\Delta PQR = {1 \over 2}PQ.QR.\sin 30^\circ $$

$$ = {1 \over 2} \times 10\sqrt 3 \times 10 \times {1 \over 2} = 25\sqrt 3 $$

Radius of incircle of

$$\Delta PQR = {{Area\,of\,\Delta PQR} \over {Semi - perimetre\,of\,\Delta PQR}}$$

i.e. $$r = {\Delta \over s} = {{25\sqrt 3 } \over {{{10\sqrt 3 + 10 + 10} \over 2}}} = {{25\sqrt 3 } \over {5(\sqrt 3 + 2)}}$$

$$ \Rightarrow r = 5\sqrt 3 (2 - \sqrt 3 ) = 10\sqrt 3 - 15$$

and radius of circumcircle

$$(R) = {{abc} \over {4\Delta }} = {{10\sqrt 3 \times 10 \times 10} \over {4 \times 25\sqrt 3 }} = 10$$

$$ \therefore $$ Area of circumcircle of

$$\Delta PQR = \pi {R^2} = 100\pi $$

Hence, option (b), (c) and (d) are correct answer.

Comments (0)

Advertisement