JEE Advance - Mathematics (2011 - Paper 1 Offline)
1
If z is any complex number satisfying $$\,\left| {z - 3 - 2i} \right| \le 2$$, then the minimum value of $$\left| {2z - 6 + 5i} \right|$$ is
Answer
5
2
The positive integer value of $$n\, > \,3$$ satisfying the equation $${1 \over {\sin \left( {{\pi \over n}} \right)}} = {1 \over {\sin \left( {{{2\pi } \over n}} \right)}} + {1 \over {\sin \left( {{{3\pi } \over n}} \right)}}$$ is
Answer
7
3
The minimum value of the sum of real numbers $${a^{ - 5}},\,{a^{ - 4}},\,3{a^{ - 3}},\,1,\,{a^8}$$ and $${a^{10}}$$ where $$a > 0$$ is
Answer
8
4
Let $$\alpha $$ and $$\beta $$ be the roots of $${x^2} - 6x - 2 = 0,$$ with $$\alpha > \beta .$$ If $${a_n} = {\alpha ^n} - {\beta ^n}$$ for $$\,n \ge 1$$ then the value of $${{{a_{10}} - 2{a_8}} \over {2{a_9}}}$$ is
Answer
(C)
3
5
Let $$\left( {{x_0},{y_0}} \right)$$ be the solution of the following equations
$$\matrix{
{{{\left( {2x} \right)}^{\ell n2}}\, = {{\left( {3y} \right)}^{\ell n3}}} \cr
{{3^{\ell nx}}\, = {2^{\ell ny}}} \cr
} $$
Then $${x_0}$$ is
Answer
(C)
$${1 \over 2}$$
6
Let $${{a_1}}$$, $${{a_2}}$$, $${{a_3}}$$........ $${{a_{100}}}$$ be an arithmetic progression with $${{a_1}}$$ = 3 and $${S_p} = \sum\limits_{i = 1}^p {{a_i},1 \le } \,p\, \le 100$$. For any integer n with $$1\,\, \le \,n\, \le 20$$, let m = 5n. If $${{{S_m}} \over {{S_n}}}$$ does not depend on n, then $${a_{2\,}}$$ is
Answer
9
7
A straight line $$L$$ through the point $$(3, -2)$$ is inclined at an angle $${60^ \circ }$$ to the line $$\sqrt {3x} + y = 1.$$ If $$L$$ also intersects the x-axis, then the equation of $$L$$ is
Answer
(B)
$$y - \sqrt {3x} + 2 + 3\sqrt 3 = 0$$
8
Let the eccentricity of the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$ be reciprocal to that of the ellipse $${x^2} + 4{y^2} = 4$$. If the hyperbola passes through a focus of the ellipse, then
Answer
D
B
9
Consider the parabola $${y^2} = 8x$$. Let $${\Delta _1}$$ be the area of the triangle formed by the end points of its latus rectum and the point $$P\left( {{1 \over 2},2} \right)$$ on the parabola and $${\Delta _2}$$ be the area of the triangle formed by drawing tangents at $$P$$ and at the end points of the latus rectum. Then $${{{\Delta _1}} \over {{\Delta _2}}}$$ is
Answer
2
10
The value of $$\,\int\limits_{\sqrt {\ell n2} }^{\sqrt {\ell n3} } {{{x\sin {x^2}} \over {\sin {x^2} + \sin \left( {\ell n6 - {x^2}} \right)}}\,dx} $$ is
Answer
(A)
$${1 \over 4}\,\ell n{3 \over 2}$$
11
Let the straight line $$x=b$$ divide the area enclosed by
$$y = {\left( {1 - x} \right)^2},y = 0,$$ and $$x=0$$ into two parts $${R_1}\left( {0 \le x \le b} \right)$$ and
$${R_2}\left( {b \le x \le 1} \right)$$ such that $${R_1} - {R_2} = {1 \over 4}.$$ Then $$b$$ equals
Answer
(B)
$${ 1\over 2}$$
12
The probability of the drawn ball from $${U_2}$$ being white is
Answer
(B)
$${{23} \over {30}}$$
13
Given that the drawn ball from $${U_2}$$ is white, the probability that head appeared on the coin is
Answer
(D)
$${{12} \over {23}}$$
14
Let $$\overrightarrow a = \widehat i + \widehat j + \widehat k,\,\overrightarrow b = \widehat i - \widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j - \widehat k$$ be three vectors. A vector $$\overrightarrow v $$ in the plane of $$\overrightarrow a $$ and $$\overrightarrow b ,$$ whose projection on $$\overrightarrow c $$ is $${{1 \over {\sqrt 3 }}}$$ , is given by
Answer
(C)
$$3\widehat i - \widehat j + 3\widehat k$$
15
The vector (s) which is/are coplanar with vectors $${\widehat i + \widehat j + 2\widehat k}$$ and $${\widehat i + 2\widehat j + \widehat k,}$$ and perpendicular to the vector $${\widehat i + \widehat j + \widehat k}$$ is/are
Answer
D
A
16
Let $$P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} $$ and $$Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} $$ be two sets. Then
Answer
(D)
$$P = Q$$
17
Let $$P = \{ \theta :\sin \theta - \cos \theta = \sqrt 2 \cos \theta \} $$ and $$Q = \{ \theta :\sin \theta + \cos \theta = \sqrt 2 \sin \theta \} $$ be two sets. Then
Answer
(D)
$$P = Q$$
18
Let f : R $$\to$$ R be a function such that $$f(x + y) = f(x) + f(y),\,\forall x,y \in R$$. If f(x) is differentiable at x = 0, then
Answer
B
C
19
Let M and N be two 3 $$\times$$ 3 non-singular skew symmetric matrices such that MN = NM. If PT denotes the transpose of P, then M2N2(MTN)$$-$$1(MN$$-$$1)T is equal to
Answer
(C)
$$-$$M2
20
If the point P(a, b, c), with reference to (E), lies on the plane 2x + y + z = 1, then the value of 7a + b + c is
Answer
(D)
6
21
Let $$\omega$$ be a solution of $${x^3} - 1 = 0$$ with $${\mathop{\rm Im}\nolimits} (\omega ) > 0$$. If a = 2 with b and c satisfying (E), then the value of $${3 \over {{\omega ^a}}} + {1 \over {{\omega ^b}}} + {3 \over {{\omega ^c}}}$$ is equal to
Answer
(A)
$$-$$2
22
Let b = 6, with a and c satisfying (E). If $$\alpha$$ and $$\beta$$ are the roots of the quadratic equation ax2 + bx + c = 0, then $$\sum\limits_{n = 0}^\infty {{{\left( {{1 \over \alpha } + {1 \over \beta }} \right)}^n}} $$ is
Answer
(B)
7
23
Let $$f:[1,\infty ) \to [2,\infty )$$ be a differentiable function such that $$f(1) = 2$$. If $$6\int\limits_1^x {f(t)dt = 3xf(x) - {x^3} - 5} $$ for all $$x \ge 1$$, then the value of f(2) is ___________.