JEE Advance - Mathematics (2011 - Paper 1 Offline - No. 2)

The positive integer value of $$n\, > \,3$$ satisfying the equation $${1 \over {\sin \left( {{\pi \over n}} \right)}} = {1 \over {\sin \left( {{{2\pi } \over n}} \right)}} + {1 \over {\sin \left( {{{3\pi } \over n}} \right)}}$$ is
Answer
7

Explanation

We have,

$${1 \over {\sin (\pi /n)}} - {1 \over {\sin (3\pi /n)}} = {1 \over {\sin (2\pi /n)}}$$

$$ \Rightarrow {{\sin (3\pi /n) - \sin (\pi /n)} \over {\sin (\pi /n)\sin (3\pi /n)}} = {1 \over {\sin (2\pi /n)}}{{(2\sin (\pi /n)\cos (2\pi /n))\sin (2\pi /n)} \over {\sin (\pi /n)\sin (3\pi /n)}} = 1$$

$$ \Rightarrow \sin {{4\pi } \over n} = \sin {{3\pi } \over n} \Rightarrow {{4\pi } \over n} + {{3\pi } \over n} = \pi \Rightarrow n = 7$$

Comments (0)

Advertisement