A body of mass $$10 \mathrm{~kg}$$ is projected at an angle of $$45^{\circ}$$ with the horizontal. The trajectory of the body is observed to pass through a point $$(20,10)$$. If $$\mathrm{T}$$ is the time of flight, then its momentum vector, at time $$\mathrm{t}=\frac{\mathrm{T}}{\sqrt{2}}$$, is _____________.
[Take $$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$$ ]
A body of mass $$\mathrm{m}$$ is projected with velocity $$\lambda \,v_{\mathrm{e}}$$ in vertically upward direction from the surface of the earth into space. It is given that $$v_{\mathrm{e}}$$ is escape velocity and $$\lambda<1$$. If air resistance is considered to be negligible, then the maximum height from the centre of earth, to which the body can go, will be :
(R : radius of earth)
Which statements are correct about degrees of freedom ?
(A) A molecule with n degrees of freedom has n$$^{2}$$ different ways of storing energy.
(B) Each degree of freedom is associated with $$\frac{1}{2}$$ RT average energy per mole.
(C) A monatomic gas molecule has 1 rotational degree of freedom where as diatomic molecule has 2 rotational degrees of freedom.
(D) $$\mathrm{CH}_{4}$$ has a total of 6 degrees of freedom.
Choose the correct answer from the options given below :
(A) The drift velocity of electrons decreases with the increase in the temperature of conductor.
(B) The drift velocity is inversely proportional to the area of cross-section of given conductor.
(C) The drift velocity does not depend on the applied potential difference to the conductor.
(D) The drift velocity of electron is inversely proportional to the length of the conductor.
(E) The drift velocity increases with the increase in the temperature of conductor.
Choose the correct answer from the options given below :
A cyclotron is used to accelerate protons. If the operating magnetic field is $$1.0 \mathrm{~T}$$ and the radius of the cyclotron 'dees' is $$60 \mathrm{~cm}$$, the kinetic energy of the accelerated protons in MeV will be :
$$[\mathrm{use} \,\,\mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}, \mathrm{e}=1.6 \times 10^{-19} \,\mathrm{C}$$ ]
Identify the correct statements from the following descriptions of various properties of electromagnetic waves.
(A) In a plane electromagnetic wave electric field and magnetic field must be perpendicular to each other and direction of propagation of wave should be along electric field or magnetic field.
(B) The energy in electromagnetic wave is divided equally between electric and magnetic fields.
(C) Both electric field and magnetic field are parallel to each other and perpendicular to the direction of propagation of wave.
(D) The electric field, magnetic field and direction of propagation of wave must be perpendicular to each other.
(E) The ratio of amplitude of magnetic field to the amplitude of electric field is equal to speed of light.
Choose the most appropriate answer from the options given below :
With reference to the observations in photo-electric effect, identify the correct statements from below :
(A) The square of maximum velocity of photoelectrons varies linearly with frequency of incident light.
(B) The value of saturation current increases on moving the source of light away from the metal surface.
(C) The maximum kinetic energy of photo-electrons decreases on decreasing the power of LED (light emitting diode) source of light.
(D) The immediate emission of photo-electrons out of metal surface can not be explained by particle nature of light/electromagnetic waves.
(E) Existence of threshold wavelength can not be explained by wave nature of light/ electromagnetic waves.
Choose the correct answer from the options given below :
In an experiment to determine the Young's modulus, steel wires of five different lengths $$(1,2,3,4$$, and $$5 \mathrm{~m})$$ but of same cross section $$\left(2 \mathrm{~mm}^{2}\right)$$ were taken and curves between extension and load were obtained. The slope (extension/load) of the curves were plotted with the wire length and the following graph is obtained. If the Young's modulus of given steel wires is $$x \times 10^{11} \,\mathrm{Nm}^{-2}$$, then the value of $$x$$ is __________.
A thin prism of angle $$6^{\circ}$$ and refractive index for yellow light $$\left(\mathrm{n}_{\mathrm{Y}}\right) 1.5$$ is combined with another prism of angle $$5^{\circ}$$ and $$\mathrm{n}_{\mathrm{Y}}=1.55$$. The combination produces no dispersion. The net average deviation $$(\delta)$$ produced by the combination is $$\left(\frac{1}{x}\right)^{\circ}$$. The value of $$x$$ is ____________.
A solid cylinder length is suspended symmetrically through two massless strings, as shown in the figure. The distance from the initial rest position, the cylinder should be unbinding the strings to achieve a speed of $$4 \mathrm{~ms}^{-1}$$, is ____________ cm. (take g = $$10 \mathrm{~ms}^{-2}$$)
Two inclined planes are placed as shown in figure. A block is projected from the Point A of inclined plane AB along its surface with a velocity just sufficient to carry it to the top Point B at a height 10 m. After reaching the Point B the block slides down on inclined plane BC. Time it takes to reach to the point C from point A is $$t(\sqrt{2}+1)$$ s. The value of t is ___________.
(use $$\mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}$$ )