JEE MAIN - Physics (2022 - 27th July Evening Shift - No. 1)

An expression of energy density is given by $$u=\frac{\alpha}{\beta} \sin \left(\frac{\alpha x}{k t}\right)$$, where $$\alpha, \beta$$ are constants, $$x$$ is displacement, $$k$$ is Boltzmann constant and t is the temperature. The dimensions of $$\beta$$ will be :
$$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \theta^{-1}\right]$$
$$\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$$
$$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$$
$$\left[\mathrm{M}^{0} \mathrm{~L}^{2} \mathrm{~T}^{0}\right]$$

Explanation

$$u = {\alpha \over \beta }\sin \left( {{{\alpha x} \over {kt}}} \right)$$

$$[\alpha] = \left[ {{{kt} \over x}} \right] = {{[Energy]} \over {[Dis\tan ce]}}$$

$$[\beta ] = {{[\alpha ]} \over {[u]}}$$

$$ = {{[Energy]/[Dis\tan ce]} \over {[Energy]/[Volume]}}$$

$$ = [{L^2}]$$

Comments (0)

Advertisement