JEE MAIN - Physics (2022 - 27th July Evening Shift - No. 2)

A body of mass $$10 \mathrm{~kg}$$ is projected at an angle of $$45^{\circ}$$ with the horizontal. The trajectory of the body is observed to pass through a point $$(20,10)$$. If $$\mathrm{T}$$ is the time of flight, then its momentum vector, at time $$\mathrm{t}=\frac{\mathrm{T}}{\sqrt{2}}$$, is _____________.

[Take $$\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$$ ]

$$ 100 \hat{i}+(100 \sqrt{2}-200) \hat{j}$$
$$100 \sqrt{2} \hat{i}+(100-200 \sqrt{2}) \hat{j}$$
$$100 \hat{i}+(100-200 \sqrt{2}) \hat{j}$$
$$100 \sqrt{2} \hat{i}+(100 \sqrt{2}-200) \hat{j}$$

Explanation

m = 10 kg

$$\theta$$ = 45$$^\circ$$

$$y = x\tan \theta \left( {1 - {x \over R}} \right)$$

$$ \Rightarrow 10 = 20\left( {1 - {{20} \over R}} \right)$$

$$ \Rightarrow R = 40$$

$$40 = {{{u^2}} \over {10}} \Rightarrow u = 20$$

$$ \Rightarrow T = {{20 \times 20 \times {1 \over {\sqrt 2 }}} \over {10}} = {4 \over {\sqrt 2 }}s \Rightarrow t = 2\,s$$

at $$t = 2,\,\overrightarrow v = \left( {10\sqrt 2 \widehat i} \right) + \left( {10\sqrt 2 - 2 \times 10} \right)\widehat j$$

$$ \Rightarrow \overrightarrow p = 10\left[ {10\sqrt 2 \widehat i + \left( {10\sqrt 2 - 20} \right)\widehat j} \right]$$

$$ = 100\sqrt 2 \widehat i + \left( {100\sqrt 2 - 200} \right)\widehat j$$

Comments (0)

Advertisement