Let $\mathrm{X}=\mathbf{R} \times \mathbf{R}$. Define a relation R on X as :
$$\left(a_1, b_1\right) R\left(a_2, b_2\right) \Leftrightarrow b_1=b_2$$
Statement I: $\quad \mathrm{R}$ is an equivalence relation.
Statement II : For some $(\mathrm{a}, \mathrm{b}) \in \mathrm{X}$, the $\operatorname{set} \mathrm{S}=\{(x, y) \in \mathrm{X}:(x, y) \mathrm{R}(\mathrm{a}, \mathrm{b})\}$ represents a line parallel to $y=x$.
In the light of the above statements, choose the correct answer from the options given below :