JEE MAIN - Mathematics (2025 - 23rd January Evening Shift)

1
If $\mathrm{I}=\int_0^{\frac{\pi}{2}} \frac{\sin ^{\frac{3}{2}} x}{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x} \mathrm{~d} x$, then $\int_0^{21} \frac{x \sin x \cos x}{\sin ^4 x+\cos ^4 x} \mathrm{~d} x$ equals :
Answer
(C)
$\frac{\pi^2}{16}$
2
The number of complex numbers $z$, satisfying $|z|=1$ and $\left|\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\right|=1$, is :
Answer
(C)
4
3
The length of the chord of the ellipse $\frac{x^2}{4}+\frac{y^2}{2}=1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is :
Answer
(A)
$\frac{2}{3} \sqrt{15}$
4
Let the point A divide the line segment joining the points $\mathrm{P}(-1,-1,2)$ and $\mathrm{Q}(5,5,10)$ internally in the ratio $r: 1(r>0)$. If O is the origin and $(\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OA}})-\frac{1}{5}|\overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{OA}}|^2=10$, then the value of r is :
Answer
(C)
7
5

A board has 16 squares as shown in the figure :

JEE Main 2025 (Online) 23rd January Evening Shift Mathematics - Probability Question 5 English

Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is :

Answer
(B)
$\frac{4}{5}$
6
If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}$ is $\frac{m}{n}$, where $m$, $n$ are coprime numbers, then $m+n$ is equal to :
Answer
(D)
9
7

Let $\mathrm{X}=\mathbf{R} \times \mathbf{R}$. Define a relation R on X as :

$$\left(a_1, b_1\right) R\left(a_2, b_2\right) \Leftrightarrow b_1=b_2$$

Statement I: $\quad \mathrm{R}$ is an equivalence relation.

Statement II : For some $(\mathrm{a}, \mathrm{b}) \in \mathrm{X}$, the $\operatorname{set} \mathrm{S}=\{(x, y) \in \mathrm{X}:(x, y) \mathrm{R}(\mathrm{a}, \mathrm{b})\}$ represents a line parallel to $y=x$.

In the light of the above statements, choose the correct answer from the options given below :

Answer
(B)
Statement I is true but Statement II is false
8
If the area of the region $\left\{(x, y):-1 \leq x \leq 1,0 \leq y \leq \mathrm{a}+\mathrm{e}^{|x|} \mid-\mathrm{e}^{-x}, \mathrm{a}>0\right\}$ is $\frac{\mathrm{e}^2+8 \mathrm{e}+1}{\mathrm{e}}$, then the value of $a$ is :
Answer
(B)
5
9
Let the range of the function $f(x)=6+16 \cos x \cdot \cos \left(\frac{\pi}{3}-x\right) \cdot \cos \left(\frac{\pi}{3}+x\right) \cdot \sin 3 x \cdot \cos 6 x, x \in \mathbf{R}$ be $[\alpha, \beta]$. Then the distance of the point $(\alpha, \beta)$ from the line $3 x+4 y+12=0$ is :
Answer
(A)
11
10

The system of equations

$$\begin{aligned} & x+y+z=6, \\ & x+2 y+5 z=9, \\ & x+5 y+\lambda z=\mu, \end{aligned}$$

has no solution if

Answer
(B)
$\lambda=17, \mu \neq 18$
11
The distance of the line $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ from the point $(1,4,0)$ along the line $\frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ is :
Answer
(D)
$\sqrt{14}$
12
$\lim \limits_{x \rightarrow \infty} \frac{\left(2 x^2-3 x+5\right)(3 x-1)^{\frac{x}{2}}}{\left(3 x^2+5 x+4\right) \sqrt{(3 x+2)^x}}$ is equal to :
Answer
(B)
$\frac{2}{3 \sqrt{\mathrm{e}}}$
13
Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], A\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $a_{23}$ equals :
Answer
(B)
$-$1
14
Let $\mathrm{A}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x+y| \geqslant 3\}$ and $\mathrm{B}=\{(x, y) \in \mathbf{R} \times \mathbf{R}:|x|+|y| \leq 3\}$. If $\mathrm{C}=\{(x, y) \in \mathrm{A} \cap \mathrm{B}: x=0$ or $y=0\}$, then $\sum_{(x, y) \in \mathrm{C}}|x+y|$ is :
Answer
(D)
12
15
If in the expansion of $(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$, the coefficients of $x$ and $x^2$ are 1 and -2 , respectively, then $\mathrm{p}^2+\mathrm{q}^2$ is equal to :
Answer
(C)
13
16
A rod of length eight units moves such that its ends $A$ and $B$ always lie on the lines $x-y+2=0$ and $y+2=0$, respectively. If the locus of the point $P$, that divides the rod $A B$ internally in the ratio $2: 1$ is $9\left(x^2+\alpha y^2+\beta x y+\gamma x+28 y\right)-76=0$, then $\alpha-\beta-\gamma$ is equal to :
Answer
(D)
23
17
Let $\int x^3 \sin x \mathrm{~d} x=g(x)+C$, where $C$ is the constant of integration. If $8\left(g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\right)=\alpha \pi^3+\beta \pi^2+\gamma, \alpha, \beta, \gamma \in Z$, then $\alpha+\beta-\gamma$ equals :
Answer
(B)
55
18
A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm , the ice-cream melts at the rate of $81 \mathrm{~cm}^3 / \mathrm{min}$ and the thickness of the ice-cream layer decreases at the rate of $\frac{1}{4 \pi} \mathrm{~cm} / \mathrm{min}$. The surface area (in $\mathrm{cm}^2$ ) of the chocolate ball (without the ice-cream layer) is :
Answer
(D)
$256 \pi$
19
Let the shortest distance from $(a, 0), a>0$, to the parabola $y^2=4 x$ be 4 . Then the equation of the circle passing through the point $(a, 0)$ and the focus of the parabola, and having its centre on the axis of the parabola is :
Answer
(B)
$x^2+y^2-6 x+5=0$
20
Let $x=x(y)$ be the solution of the differential equation $y=\left(x-y \frac{\mathrm{~d} x}{\mathrm{~d} y}\right) \sin \left(\frac{x}{y}\right), y>0$ and $x(1)=\frac{\pi}{2}$. Then $\cos (x(2))$ is equal to :
Answer
(D)
$2\left(\log _e 2\right)^2-1$
21
Let $\alpha, \beta$ be the roots of the equation $x^2-\mathrm{ax}-\mathrm{b}=0$ with $\operatorname{Im}(\alpha)<\operatorname{Im}(\beta)$. Let $\mathrm{P}_{\mathrm{n}}=\alpha^{\mathrm{n}}-\beta^{\mathrm{n}}$. If $\mathrm{P}_3=-5 \sqrt{7} i, \mathrm{P}_4=-3 \sqrt{7} i, \mathrm{P}_5=11 \sqrt{7} i$ and $\mathrm{P}_6=45 \sqrt{7} i$, then $\left|\alpha^4+\beta^4\right|$ is equal to __________.
Answer
31
22
The focus of the parabola $y^2=4 x+16$ is the centre of the circle $C$ of radius 5 . If the values of $\lambda$, for which C passes through the point of intersection of the lines $3 x-y=0$ and $x+\lambda y=4$, are $\lambda_1$ and $\lambda_2, \lambda_1<\lambda_2$, then $12 \lambda_1+29 \lambda_2$ is equal to ________ .
Answer
15
23
The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is ________.
Answer
17280
24
The roots of the quadratic equation $3 x^2-p x+q=0$ are $10^{\text {th }}$ and $11^{\text {th }}$ terms of an arithmetic progression with common difference $\frac{3}{2}$. If the sum of the first 11 terms of this arithmetic progression is 88 , then $q-2 p$ is equal to ________ .
Answer
474
25
The variance of the numbers $8,21,34,47, \ldots, 320$ is _______.
Answer
8788