JEE MAIN - Mathematics (2025 - 23rd January Evening Shift - No. 9)

Let the range of the function $f(x)=6+16 \cos x \cdot \cos \left(\frac{\pi}{3}-x\right) \cdot \cos \left(\frac{\pi}{3}+x\right) \cdot \sin 3 x \cdot \cos 6 x, x \in \mathbf{R}$ be $[\alpha, \beta]$. Then the distance of the point $(\alpha, \beta)$ from the line $3 x+4 y+12=0$ is :
11
10
8
9

Explanation

$$\begin{aligned} &\begin{aligned} f(x) & =6+16\left(\frac{1}{4} \cos 3 x\right) \sin 3 x \cdot \cos 6 x \\ & =6+4 \cos 3 x \sin 3 x \cos 6 x \\ & =6+\sin 12 x \end{aligned}\\ &\text { Range of } f(x) \text { is [5, 7] }\\ &\begin{aligned} & (\alpha, \beta) \equiv(5,7) \\ & \text { distance }=\left|\frac{15+28+12}{5}\right|=11 \end{aligned} \end{aligned}$$

Comments (0)

Advertisement