JEE MAIN - Mathematics (2025 - 23rd January Evening Shift - No. 13)

Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], A\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $a_{23}$ equals :
2
$-$1
1
0

Explanation

$$\begin{aligned} & \text { Let } A=\left[\begin{array}{lll} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right] \\ & A\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right]=\left[\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right] \Rightarrow\left[\begin{array}{l} a_{12} \\ a_{22} \\ a_{32} \end{array}\right]=\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right] \Rightarrow \begin{array}{l} a_{22}=0 ; a_{12}=0 \\ a_{32}=1 \end{array} \end{aligned}$$

$$\begin{aligned} A\left[\begin{array}{l} 4 \\ 1 \\ 3 \end{array}\right]=\left[\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right] \Rightarrow \begin{array}{l} 4 a_{11}+a_{12}+3 a_{13}=0 \\ 4 a_{21}+a_{22}+3 a_{23}=1 \Rightarrow 4 a_{21}+3 a_{23}=1 \\ 4 a_{31}+a_{32}+3 a_{33}=0 \end{array} \\ A\left[\begin{array}{l} 2 \\ 1 \\ 2 \end{array}\right]=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right] \Rightarrow \begin{array}{l} 2 a_{11}+a_{12}+2 a_{13}=1 \\ 2 a_{21}+a_{22}+2 a_{23}=0 \Rightarrow a_{21}+a_{23}=0 \\ 2 a_{31}+a_{32}+2 a_{33}=0 \end{array} \\ -4 a_{23}+3 a_{23}=1 \Rightarrow a_{23}=-1 \end{aligned}$$

Comments (0)

Advertisement