JEE MAIN - Mathematics (2025 - 23rd January Evening Shift - No. 6)
If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}$ is $\frac{m}{n}$, where $m$, $n$ are coprime numbers, then $m+n$ is equal to :
14
6
21
9
Explanation
$$\begin{aligned}
& \overrightarrow{\mathrm{a}}=(2,1,-3) \\
& \overrightarrow{\mathrm{b}}=(-1,-3,-5) \\
& \overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}=\left|\begin{array}{ccc}
\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\
1 & 2 & -3 \\
2 & 4 & -5
\end{array}\right| \\
& =2 \hat{\mathrm{i}}-\hat{\mathrm{j}} \\
& \overrightarrow{\mathrm{~b}}-\overrightarrow{\mathrm{a}}=-3 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-2 \hat{\mathrm{k}} \\
& \mathrm{~S}_{\mathrm{d}}=\frac{|(\overrightarrow{\mathrm{b}}-\overrightarrow{\mathrm{a}}) \cdot(\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}})|}{|\overrightarrow{\mathrm{p}} \times \overrightarrow{\mathrm{q}}|} \\
& =\frac{2}{\sqrt{5}} \\
& \left(\mathrm{~S}_{\mathrm{d}}\right)^2=\frac{4}{5} \\
& \mathrm{~m}=4, \mathrm{n}=5 \Rightarrow \mathrm{~m}+\mathrm{n}=9
\end{aligned}$$
Comments (0)
