JEE MAIN - Mathematics (2024 - 9th April Morning Shift)

1
If the domain of the function $$f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$$ is $$\mathbf{R}-(\alpha, \beta)$$, then $$12 \alpha \beta$$ is equal to :
Answer
(D)
32
2
Let three vectors ,$$\overrightarrow{\mathrm{a}}=\alpha \hat{i}+4 \hat{j}+2 \hat{k}, \overrightarrow{\mathrm{b}}=5 \hat{i}+3 \hat{j}+4 \hat{k}, \overrightarrow{\mathrm{c}}=x \hat{i}+y \hat{j}+z \hat{k}$$ form a triangle such that $$\vec{c}=\vec{a}-\vec{b}$$ and the area of the triangle is $$5 \sqrt{6}$$. If $$\alpha$$ is a positive real number, then $$|\vec{c}|^2$$ is equal to:
Answer
(A)
14
3
Let $$f(x)=a x^3+b x^2+c x+41$$ be such that $$f(1)=40, f^{\prime}(1)=2$$ and $$f^{\prime \prime}(1)=4$$. Then $$a^2+b^2+c^2$$ is equal to:
Answer
(B)
51
4
The parabola $$y^2=4 x$$ divides the area of the circle $$x^2+y^2=5$$ in two parts. The area of the smaller part is equal to :
Answer
(A)
$$\frac{2}{3}+5 \sin ^{-1}\left(\frac{2}{\sqrt{5}}\right)$$
5
The solution of the differential equation $$(x^2+y^2) \mathrm{d} x-5 x y \mathrm{~d} y=0, y(1)=0$$, is :
Answer
(A)
$$\left|x^2-4 y^2\right|^5=x^2$$
6
Let $$|\cos \theta \cos (60-\theta) \cos (60+\theta)| \leq \frac{1}{8}, \theta \epsilon[0,2 \pi]$$. Then, the sum of all $$\theta \in[0,2 \pi]$$, where $$\cos 3 \theta$$ attains its maximum value, is :
Answer
(A)
$$6 \pi$$
7
If the sum of the series $$\frac{1}{1 \cdot(1+\mathrm{d})}+\frac{1}{(1+\mathrm{d})(1+2 \mathrm{~d})}+\ldots+\frac{1}{(1+9 \mathrm{~d})(1+10 \mathrm{~d})}$$ is equal to 5, then $$50 \mathrm{~d}$$ is equal to :
Answer
(A)
5
8
The coefficient of $$x^{70}$$ in $$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$$ is $${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$$. Then a possible value of $$\mathrm{p}+\mathrm{q}$$ is :
Answer
(B)
83
9

The frequency distribution of the age of students in a class of 40 students is given below.

Age 15 16 17 18 19 20
No of Students 5 8 5 12 $$x$$ $$y$$

If the mean deviation about the median is 1.25, then $$4x+5y$$ is equal to :

Answer
(C)
44
10
Let a circle passing through $$(2,0)$$ have its centre at the point $$(\mathrm{h}, \mathrm{k})$$. Let $$(x_{\mathrm{c}}, y_{\mathrm{c}})$$ be the point of intersection of the lines $$3 x+5 y=1$$ and $$(2+\mathrm{c}) x+5 \mathrm{c}^2 y=1$$. If $$\mathrm{h}=\lim _\limits{\mathrm{c} \rightarrow 1} x_{\mathrm{c}}$$ and $$\mathrm{k}=\lim _\limits{\mathrm{c} \rightarrow 1} y_{\mathrm{c}}$$, then the equation of the circle is :
Answer
(B)
$$25 x^2+25 y^2-20 x+2 y-60=0$$
11
Let $$\int \frac{2-\tan x}{3+\tan x} \mathrm{~d} x=\frac{1}{2}\left(\alpha x+\log _e|\beta \sin x+\gamma \cos x|\right)+C$$, where $$C$$ is the constant of integration. Then $$\alpha+\frac{\gamma}{\beta}$$ is equal to :
Answer
(D)
4
12
Let $$\alpha, \beta$$ be the roots of the equation $$x^2+2 \sqrt{2} x-1=0$$. The quadratic equation, whose roots are $$\alpha^4+\beta^4$$ and $$\frac{1}{10}(\alpha^6+\beta^6)$$, is:
Answer
(B)
$$x^2-195 x+9506=0$$
13
Let $$f(x)=x^2+9, g(x)=\frac{x}{x-9}$$ and $$\mathrm{a}=f \circ g(10), \mathrm{b}=g \circ f(3)$$. If $$\mathrm{e}$$ and $$l$$ denote the eccentricity and the length of the latus rectum of the ellipse $$\frac{x^2}{\mathrm{a}}+\frac{y^2}{\mathrm{~b}}=1$$, then $$8 \mathrm{e}^2+l^2$$ is equal to.
Answer
(C)
8
14
The shortest distance between the lines $$\frac{x-3}{4}=\frac{y+7}{-11}=\frac{z-1}{5}$$ and $$\frac{x-5}{3}=\frac{y-9}{-6}=\frac{z+2}{1}$$ is:
Answer
(B)
$$\frac{187}{\sqrt{563}}$$
15
A variable line $$\mathrm{L}$$ passes through the point $$(3,5)$$ and intersects the positive coordinate axes at the points $$\mathrm{A}$$ and $$\mathrm{B}$$. The minimum area of the triangle $$\mathrm{OAB}$$, where $$\mathrm{O}$$ is the origin, is :
Answer
(C)
30
16
The solution curve, of the differential equation $$2 y \frac{\mathrm{d} y}{\mathrm{~d} x}+3=5 \frac{\mathrm{d} y}{\mathrm{~d} x}$$, passing through the point $$(0,1)$$ is a conic, whose vertex lies on the line :
Answer
(C)
$$2 x+3 y=9$$
17

Let $$\lambda, \mu \in \mathbf{R}$$. If the system of equations

$$\begin{aligned} & 3 x+5 y+\lambda z=3 \\ & 7 x+11 y-9 z=2 \\ & 97 x+155 y-189 z=\mu \end{aligned}$$

has infinitely many solutions, then $$\mu+2 \lambda$$ is equal to :

Answer
(B)
25
18
A ray of light coming from the point $$\mathrm{P}(1,2)$$ gets reflected from the point $$\mathrm{Q}$$ on the $$x$$-axis and then passes through the point $$R(4,3)$$. If the point $$S(h, k)$$ is such that $$P Q R S$$ is a parallelogram, then $$hk^2$$ is equal to:
Answer
(B)
70
19
Let the line $$\mathrm{L}$$ intersect the lines $$x-2=-y=z-1,2(x+1)=2(y-1)=z+1$$ and be parallel to the line $$\frac{x-2}{3}=\frac{y-1}{1}=\frac{z-2}{2}$$. Then which of the following points lies on $$\mathrm{L}$$ ?
Answer
(A)
$$\left(-\frac{1}{3}, 1,-1\right)$$
20
Let $$\overrightarrow{O A}=2 \vec{a}, \overrightarrow{O B}=6 \vec{a}+5 \vec{b}$$ and $$\overrightarrow{O C}=3 \vec{b}$$, where $$O$$ is the origin. If the area of the parallelogram with adjacent sides $$\overrightarrow{O A}$$ and $$\overrightarrow{O C}$$ is 15 sq. units, then the area (in sq. units) of the quadrilateral $$O A B C$$ is equal to:
Answer
(C)
35
21
Let $$A=\{2,3,6,7\}$$ and $$B=\{4,5,6,8\}$$. Let $$R$$ be a relation defined on $$A \times B$$ by $$(a_1, b_1) R(a_2, b_2)$$ if and only if $$a_1+a_2=b_1+b_2$$. Then the number of elements in $$R$$ is __________.
Answer
25
22
Let $$\lim _\limits{n \rightarrow \infty}\left(\frac{n}{\sqrt{n^4+1}}-\frac{2 n}{\left(n^2+1\right) \sqrt{n^4+1}}+\frac{n}{\sqrt{n^4+16}}-\frac{8 n}{\left(n^2+4\right) \sqrt{n^4+16}}\right.$$ $$\left.+\ldots+\frac{n}{\sqrt{n^4+n^4}}-\frac{2 n \cdot n^2}{\left(n^2+n^2\right) \sqrt{n^4+n^4}}\right)$$ be $$\frac{\pi}{k}$$, using only the principal values of the inverse trigonometric functions. Then $$\mathrm{k}^2$$ is equal to _________.
Answer
32
23

Let $$f:(0, \pi) \rightarrow \mathbf{R}$$ be a function given by $$f(x)=\left\{\begin{array}{cc}\left(\frac{8}{7}\right)^{\frac{\tan 8 x}{\tan 7 x}}, & 0< x<\frac{\pi}{2} \\ \mathrm{a}-8, & x=\frac{\pi}{2} \\ (1+\mid \cot x)^{\frac{\mathrm{b}}{\mathrm{a}}|\tan x|}, & \frac{\pi}{2} < x < \pi\end{array}\right.$$

where $$\mathrm{a}, \mathrm{b} \in \mathbf{Z}$$. If $$f$$ is continuous at $$x=\frac{\pi}{2}$$, then $$\mathrm{a}^2+\mathrm{b}^2$$ is equal to _________.

Answer
81
24
The remainder when $$428^{2024}$$ is divided by 21 is __________.
Answer
1
25
If a function $$f$$ satisfies $$f(\mathrm{~m}+\mathrm{n})=f(\mathrm{~m})+f(\mathrm{n})$$ for all $$\mathrm{m}, \mathrm{n} \in \mathbf{N}$$ and $$f(1)=1$$, then the largest natural number $$\lambda$$ such that $$\sum_\limits{\mathrm{k}=1}^{2022} f(\lambda+\mathrm{k}) \leq(2022)^2$$ is equal to _________.
Answer
1010
26
Let the centre of a circle, passing through the points $$(0,0),(1,0)$$ and touching the circle $$x^2+y^2=9$$, be $$(h, k)$$. Then for all possible values of the coordinates of the centre $$(h, k), 4\left(h^2+k^2\right)$$ is equal to __________.
Answer
9
27
The sum of the square of the modulus of the elements in the set $$\{z=\mathrm{a}+\mathrm{ib}: \mathrm{a}, \mathrm{b} \in \mathbf{Z}, z \in \mathbf{C},|z-1| \leq 1,|z-5| \leq|z-5 \mathrm{i}|\}$$ is __________.
Answer
9
28
Let the set of all positive values of $$\lambda$$, for which the point of local minimum of the function $$(1+x(\lambda^2-x^2))$$ satisfies $$\frac{x^2+x+2}{x^2+5 x+6}<0$$, be $$(\alpha, \beta)$$. Then $$\alpha^2+\beta^2$$ is equal to _________.
Answer
39
29
Let $$A$$ be a non-singular matrix of order 3. If $$\operatorname{det}(3 \operatorname{adj}(2 \operatorname{adj}((\operatorname{det} A) A)))=3^{-13} \cdot 2^{-10}$$ and $$\operatorname{det}(3\operatorname{adj}(2 \mathrm{A}))=2^{\mathrm{m}} \cdot 3^{\mathrm{n}}$$, then $$|3 \mathrm{~m}+2 \mathrm{n}|$$ is equal to _________.
Answer
14
30
Let $$\mathrm{a}, \mathrm{b}$$ and $$\mathrm{c}$$ denote the outcome of three independent rolls of a fair tetrahedral die, whose four faces are marked $$1,2,3,4$$. If the probability that $$a x^2+b x+c=0$$ has all real roots is $$\frac{m}{n}, \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$, then $$\mathrm{m}+\mathrm{n}$$ is equal to _________.
Answer
19