JEE MAIN - Mathematics (2024 - 9th April Morning Shift - No. 13)
Let $$f(x)=x^2+9, g(x)=\frac{x}{x-9}$$ and $$\mathrm{a}=f \circ g(10), \mathrm{b}=g \circ f(3)$$. If $$\mathrm{e}$$ and $$l$$ denote the eccentricity and the length of the latus rectum of the ellipse $$\frac{x^2}{\mathrm{a}}+\frac{y^2}{\mathrm{~b}}=1$$, then $$8 \mathrm{e}^2+l^2$$ is equal to.
6
12
8
16
Explanation
$$\begin{aligned} & g(10)=10 \\ & a=f(g(10))=f(10)=109 \\ & f(3)=18 \\ & b=g(f(3))=g(18)=2 \\ & \frac{x^2}{109}+\frac{y^2}{2}=1 \\ & e=\sqrt{1-\frac{2}{109}}=\sqrt{\frac{107}{109}} \\ & I=\frac{2 b^2}{a}=\frac{2 \times 2}{\sqrt{109}} \end{aligned}$$
$$ \begin{aligned} 8 e^2+l^2 & =\frac{8 \times 107}{109}+\frac{16}{109} \\ & =8 \end{aligned} $$
Comments (0)
