JEE MAIN - Mathematics (2024 - 9th April Morning Shift - No. 15)

A variable line $$\mathrm{L}$$ passes through the point $$(3,5)$$ and intersects the positive coordinate axes at the points $$\mathrm{A}$$ and $$\mathrm{B}$$. The minimum area of the triangle $$\mathrm{OAB}$$, where $$\mathrm{O}$$ is the origin, is :
35
25
30
40

Explanation

JEE Main 2024 (Online) 9th April Morning Shift Mathematics - Straight Lines and Pair of Straight Lines Question 20 English Explanation

$$\begin{aligned} & \frac{x}{a}+\frac{y}{b}=1 \\ & \frac{3}{a}+\frac{5}{b}=1 \\ & 3 b+5 a=a b \\ & 5 a-a b=-3 b \\ & a(5-b)=-3 b \\ & a=\frac{3 b}{b-5} \end{aligned}$$

$$\begin{aligned} & \text { Area of triangle }=\left|\frac{1}{2} \times a \times b\right| \\ & =\frac{1}{2} \times \frac{3 b}{b-5} \times b \\ & \Rightarrow f(b)=\frac{3 b^2}{2 b-10} \\ & \Rightarrow f^{\prime}(b)=0,(2 b-10) 6 b-2\left(3 b^2\right)=0 \\ & 12 b^2-60 b-6 b^2=0 \\ & 6 b^2-60 b=0 \\ & b^2-10 b=0 \\ & b(b-10)=0 \\ & b=0 \text { or } b=10 \end{aligned}$$

So for minimum area, $$b=10$$

then $$\frac{1}{2} \times a \times b=30$$

Comments (0)

Advertisement