JEE MAIN - Mathematics (2024 - 9th April Morning Shift - No. 16)

The solution curve, of the differential equation $$2 y \frac{\mathrm{d} y}{\mathrm{~d} x}+3=5 \frac{\mathrm{d} y}{\mathrm{~d} x}$$, passing through the point $$(0,1)$$ is a conic, whose vertex lies on the line :
$$2 x+3 y=-9$$
$$2 x+3 y=-6$$
$$2 x+3 y=9$$
$$2 x+3 y=6$$

Explanation

$$\begin{aligned} & 2 y \frac{d y}{d x}+3=5 \frac{d y}{d x} \\ & 2 y d y+3 d x=5 d y \\ & y^2+3 x=5 y+\left.c\right|_{(0,1)} \\ & 1+0=5+c \\ & c=-4 \\ & y^2-5 y=-3 x-4 \\ & y^2-5 y+\frac{25}{4}-\frac{25}{4}=-3 x-4 \\ & \left(y-\frac{5}{2}\right)^2=-3 x+\frac{9}{4} \\ & \left(y-\frac{5}{2}\right)^2=-3\left(x-\frac{3}{4}\right) \\ & \left(\frac{3}{4}, \frac{5}{2}\right) \text { satisfies by } 2 x+3 y=9 \end{aligned}$$

Comments (0)

Advertisement