JEE MAIN - Mathematics (2022 - 25th June Morning Shift)

1
The value of $$\int\limits_0^\pi {{{{e^{\cos x}}\sin x} \over {(1 + {{\cos }^2}x)({e^{\cos x}} + {e^{ - \cos x}})}}dx} $$ is equal to:
Answer
(C)
$${\pi \over 4}$$
2

Let f : N $$\to$$ R be a function such that $$f(x + y) = 2f(x)f(y)$$ for natural numbers x and y. If f(1) = 2, then the value of $$\alpha$$ for which

$$\sum\limits_{k = 1}^{10} {f(\alpha + k) = {{512} \over 3}({2^{20}} - 1)} $$

holds, is :

Answer
(C)
4
3

Let A be a 3 $$\times$$ 3 real matrix such that

$$A\left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right) = \left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right);A\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right) = \left( {\matrix{ { - 1} \cr 0 \cr 1 \cr } } \right)$$ and $$A\left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right) = \left( {\matrix{ 1 \cr 1 \cr 2 \cr } } \right)$$.

If $$X = {({x_1},{x_2},{x_3})^T}$$ and I is an identity matrix of order 3, then the system $$(A - 2I)X = \left( {\matrix{ 4 \cr 1 \cr 1 \cr } } \right)$$ has :

Answer
(B)
infinitely many solutions
4
Let f : R $$\to$$ R be defined as $$f(x) = {x^3} + x - 5$$. If g(x) is a function such that $$f(g(x)) = x,\forall 'x' \in R$$, then g'(63) is equal to ________________.
Answer
(A)
$${1 \over {49}}$$
5
If $${1 \over {2\,.\,{3^{10}}}} + {1 \over {{2^2}\,.\,{3^9}}} + \,\,.....\,\, + \,\,{1 \over {{2^{10}}\,.\,3}} = {K \over {{2^{10}}\,.\,{3^{10}}}}$$, then the remainder when K is divided by 6 is :
Answer
(D)
5
6
Let f(x) be a polynomial function such that $$f(x) + f'(x) + f''(x) = {x^5} + 64$$. Then, the value of $$\mathop {\lim }\limits_{x \to 1} {{f(x)} \over {x - 1}}$$ is equal to:
Answer
(A)
$$-$$15
7
Let E1 and E2 be two events such that the conditional probabilities $$P({E_1}|{E_2}) = {1 \over 2}$$, $$P({E_2}|{E_1}) = {3 \over 4}$$ and $$P({E_1} \cap {E_2}) = {1 \over 8}$$. Then :
Answer
(C)
$$P({E_1} \cap E{'_2}) = P({E_1})\,.\,P({E_2})$$
8
Let $$A = \left[ {\matrix{ 0 & { - 2} \cr 2 & 0 \cr } } \right]$$. If M and N are two matrices given by $$M = \sum\limits_{k = 1}^{10} {{A^{2k}}} $$ and $$N = \sum\limits_{k = 1}^{10} {{A^{2k - 1}}} $$ then MN2 is :
Answer
(A)
a non-identity symmetric matrix
9
Let $$g:(0,\infty ) \to R$$ be a differentiable function such that

$$\int {\left( {{{x(\cos x - \sin x)} \over {{e^x} + 1}} + {{g(x)\left( {{e^x} + 1 - x{e^x}} \right)} \over {{{({e^x} + 1)}^2}}}} \right)dx = {{x\,g(x)} \over {{e^x} + 1}} + c} $$, for all x > 0, where c is an arbitrary constant. Then :
Answer
(D)
g $$-$$ g' is increasing in $$\left( {0,{\pi \over 2}} \right)$$
10
Let $$f:R \to R$$ and $$g:R \to R$$ be two functions defined by $$f(x) = {\log _e}({x^2} + 1) - {e^{ - x}} + 1$$ and $$g(x) = {{1 - 2{e^{2x}}} \over {{e^x}}}$$. Then, for which of the following range of $$\alpha$$, the inequality $$f\left( {g\left( {{{{{(\alpha - 1)}^2}} \over 3}} \right)} \right) > f\left( {g\left( {\alpha -{5 \over 3}} \right)} \right)$$ holds ?
Answer
(A)
(2, 3)
11
Let $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$ $${a_i} > 0$$, $$i = 1,2,3$$ be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of $$\overrightarrow a $$ on the vector $$3\widehat i + 4\widehat j$$ be 7. Let $$\overrightarrow b $$ be a vector obtained by rotating $$\overrightarrow a $$ with 90$$^\circ$$. If $$\overrightarrow a $$, $$\overrightarrow b $$ and x-axis are coplanar, then projection of a vector $$\overrightarrow b $$ on $$3\widehat i + 4\widehat j$$ is equal to:
Answer
(B)
$$\sqrt 2 $$
12
Let $$y = y(x)$$ be the solution of the differential equation $$(x + 1)y' - y = {e^{3x}}{(x + 1)^2}$$, with $$y(0) = {1 \over 3}$$. Then, the point $$x = - {4 \over 3}$$ for the curve $$y = y(x)$$ is :
Answer
(B)
a point of local minima
13
If the solution curve $$y = y(x)$$ of the differential equation $${y^2}dx + ({x^2} - xy + {y^2})dy = 0$$, which passes through the point (1, 1) and intersects the line $$y = \sqrt 3 x$$ at the point $$(\alpha ,\sqrt 3 \alpha )$$, then value of $${\log _e}(\sqrt 3 \alpha )$$ is equal to :
Answer
(C)
$${\pi \over 12}$$
14
Let $$x = 2t$$, $$y = {{{t^2}} \over 3}$$ be a conic. Let S be the focus and B be the point on the axis of the conic such that $$SA \bot BA$$, where A is any point on the conic. If k is the ordinate of the centroid of the $$\Delta$$SAB, then $$\mathop {\lim }\limits_{t \to 1} k$$ is equal to :
Answer
(D)
$${{13} \over {18}}$$
15
Let a circle C in complex plane pass through the points $${z_1} = 3 + 4i$$, $${z_2} = 4 + 3i$$ and $${z_3} = 5i$$. If $$z( \ne {z_1})$$ is a point on C such that the line through z and z1 is perpendicular to the line through z2 and z3, then $$arg(z)$$ is equal to :
Answer
(B)
$${\tan ^{ - 1}}\left( {{{24} \over 7}} \right) - \pi $$
16
The number of 3-digit odd numbers, whose sum of digits is a multiple of 7, is _____________.
Answer
63
17
Let $$\theta$$ be the angle between the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$, where $$|\overrightarrow a | = 4,$$ $$|\overrightarrow b | = 3$$ and $$\theta \in \left( {{\pi \over 4},{\pi \over 3}} \right)$$. Then $${\left| {\left( {\overrightarrow a - \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow b } \right)} \right|^2} + 4{\left( {\overrightarrow a \,.\,\overrightarrow b } \right)^2}$$ is equal to __________.
Answer
576
18
Let the abscissae of the two points P and Q be the roots of $$2{x^2} - rx + p = 0$$ and the ordinates of P and Q be the roots of $${x^2} - sx - q = 0$$. If the equation of the circle described on PQ as diameter is $$2({x^2} + {y^2}) - 11x - 14y - 22 = 0$$, then $$2r + s - 2q + p$$ is equal to __________.
Answer
7
19
Let $$f:R \to R$$ be a function defined by

$$f(x) = {\left( {2\left( {1 - {{{x^{25}}} \over 2}} \right)(2 + {x^{25}})} \right)^{{1 \over {50}}}}$$. If the function $$g(x) = f(f(f(x))) + f(f(x))$$, then the greatest integer less than or equal to g(1) is ____________.
Answer
2
20
Let A be a 3 $$\times$$ 3 matrix having entries from the set {$$-$$1, 0, 1}. The number of all such matrices A having sum of all the entries equal to 5, is ___________.
Answer
414