JEE MAIN - Mathematics (2022 - 25th June Morning Shift - No. 12)
Explanation
$$(x + 1){{dy} \over {dx}} - y = {e^{3x}}{(x + 1)^2}$$
$${{dy} \over {dx}} - {y \over {x + 1}} = {e^{3x}}(x + 1)$$
If $${e^{ - \int {{1 \over {x + 1}}x} }} = {e^{ - \log (x + 1)}} = {1 \over {x + 1}}$$
$$\therefore$$ $$y\left( {{1 \over {x + 1}}} \right) = \int {{{{e^{3x}}(x + 1)} \over {x + 1}}dx} $$
$${y \over {x + 1}} = \int {{e^{3x}}dx} $$
$${y \over {x + 1}} = {{{e^{3x}}} \over 3} + c$$
$$\because$$ $$y(0) = {1 \over 3}$$
$${1 \over 3} = {1 \over 3} + c$$
$$\therefore$$ $$c = 0$$
So : $$y = {{{e^{3x}}} \over 3}(x + 1)$$
$$y' = {e^{3x}}(x + 1) + {{{e^{3x}}} \over 3} = {e^{3x}}\left( {x + {4 \over 3}} \right)$$
$$y'' = 3{e^{3x}}\left( {x + {4 \over 3}} \right) + {e^{3x}} = {e^{3x}}(3x + 5)$$
$$y' = 0$$ at $$x = {{ - 4} \over 3}$$ & $$y'' = {e^{ - 4}}(1) > 0$$ at $$x = {{ - 4} \over 3}$$
$$ \Rightarrow x = {{ - 4} \over 3}$$ is point of local minima
Comments (0)
