JEE MAIN - Mathematics (2022 - 25th June Morning Shift - No. 19)
$$f(x) = {\left( {2\left( {1 - {{{x^{25}}} \over 2}} \right)(2 + {x^{25}})} \right)^{{1 \over {50}}}}$$. If the function $$g(x) = f(f(f(x))) + f(f(x))$$, then the greatest integer less than or equal to g(1) is ____________.
Explanation
Given,
$$f(x) = {\left( {2\left( {1 - {{{x^{25}}} \over 2}} \right)\left( {2 + {x^{25}}} \right)} \right)^{{1 \over {50}}}}$$
and $$g(x) = f\left( {f\left( {f\left( x \right)} \right)} \right) + f\left( {f\left( x \right)} \right)$$
$$\therefore$$ $$g(1) = f\left( {f\left( {f\left( 1 \right)} \right)} \right) + f\left( {f\left( 1 \right)} \right)$$
Now, $$f(1) = {\left( {2\left( {1 - {{{1^{25}}} \over 2}} \right)\left( {2 + {1^{25}}} \right)} \right)^{{1 \over {50}}}}$$
$$ = {\left( {2\left( {1 - {1 \over 2}} \right)\left( {2 + 1} \right)} \right)^{{1 \over {50}}}}$$
$$ = {\left( 3 \right)^{{1 \over {50}}}}$$
$$\therefore$$ $$f\left( {f\left( 1 \right)} \right) = f\left( {{3^{{1 \over {50}}}}} \right)$$
$$ = {\left( {2\left( {1 - {{{{\left( {{3^{{1 \over {50}}}}} \right)}^{25}}} \over 2}} \right)\left( {2 + {{\left( {{3^{{1 \over {50}}}}} \right)}^{25}}} \right)} \right)^{{1 \over {50}}}}$$
$$ = {\left( {2\left( {1 - {{{3^{{1 \over 2}}}} \over 2}} \right)\left( {2 + {3^{{1 \over 2}}}} \right)} \right)^{{1 \over {50}}}}$$
$$ = {\left( {2 \times \left( {{{2 - \sqrt 3 } \over 2}} \right)\left( {2 + \sqrt 3 } \right)} \right)^{{1 \over {50}}}}$$
$$ = {\left[ {\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)} \right]^{{1 \over {50}}}}$$
$$ = {\left( {4 - 3} \right)^{{1 \over {50}}}}$$
$$ = {1^{{1 \over {50}}}} = 1$$
Now, $$f\left( {f\left( {f\left( 1 \right)} \right)} \right) = f(1) = {3^{{1 \over {50}}}}$$
$$\therefore$$ $$g(1) = f\left( {f\left( {f\left( 1 \right)} \right)} \right) + f\left( {f\left( 1 \right)} \right)$$
$$ = {3^{{1 \over {50}}}} + 1$$
Now, greatest integer less than or equal to $$g(1)$$
$$ = \left[ {g(1)} \right]$$
$$ = \left[ {{3^{{1 \over {50}}}} + 1} \right]$$
$$ = \left[ {{3^{{1 \over {50}}}}} \right] + \left[ 1 \right]$$
$$ = [1.02] + 1$$
$$ = 1 + 1 = 2$$
Comments (0)
