JEE MAIN - Mathematics (2022 - 25th June Morning Shift - No. 10)
Let $$f:R \to R$$ and $$g:R \to R$$ be two functions defined by $$f(x) = {\log _e}({x^2} + 1) - {e^{ - x}} + 1$$ and $$g(x) = {{1 - 2{e^{2x}}} \over {{e^x}}}$$. Then, for which of the following range of $$\alpha$$, the inequality $$f\left( {g\left( {{{{{(\alpha - 1)}^2}} \over 3}} \right)} \right) > f\left( {g\left( {\alpha -{5 \over 3}} \right)} \right)$$ holds ?
(2, 3)
($$-$$2, $$-$$1)
(1, 2)
($$-$$1, 1)
Explanation
$$f(x) = {\log _e}({x^2} + 1) - {e^{ - x}} + 1$$
$$f'(x) = {{2x} \over {{x^2} + 1}} + {e^{ - x}}$$
$$ = {2 \over {x + {1 \over x}}} + {e^{ - x}} > 0\,\,\forall x \in R$$
$$g(x) = {e^{ - x}} - 2{e^x}$$
$$g'(x) - - {e^{ - x}} - 2{e^x} < 0\,\,\,\,\forall x \in R$$
$$\Rightarrow$$ f(x) is increasing and g(x) is decreasing function.
$$f\left( {g\left( {{{{{(\alpha - 1)}^2}} \over 3}} \right)} \right) > f\left( {g\left( {\alpha - {5 \over 3}} \right)} \right)$$
$$ \Rightarrow {{{{(\alpha - 1)}^2}} \over 3} < \alpha - {5 \over 3}$$
$$ = {\alpha ^2} - 5\alpha + 6 < 0$$
$$ = (\alpha - 2)(\alpha - 3) < 0$$
$$ = \alpha \in (2,\,3)$$
Comments (0)
