JEE MAIN - Mathematics (2022 - 25th June Morning Shift - No. 17)

Let $$\theta$$ be the angle between the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$, where $$|\overrightarrow a | = 4,$$ $$|\overrightarrow b | = 3$$ and $$\theta \in \left( {{\pi \over 4},{\pi \over 3}} \right)$$. Then $${\left| {\left( {\overrightarrow a - \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow b } \right)} \right|^2} + 4{\left( {\overrightarrow a \,.\,\overrightarrow b } \right)^2}$$ is equal to __________.
Answer
576

Explanation

$${\left| {\left( {\overrightarrow a - \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow b } \right)} \right|^2} + 4{\left( {\overrightarrow a \,.\,\overrightarrow b } \right)^2}$$

$$ \Rightarrow {\left| {\overrightarrow a \times \overrightarrow a + \overrightarrow a \times \overrightarrow b - \overrightarrow b \times \overrightarrow a - \overrightarrow b \times \overrightarrow b } \right|^2} + 4{\left( {\overrightarrow a \,.\,\overrightarrow b } \right)^2}$$

$$ \Rightarrow {\left| {2\left( {\overrightarrow a \times \overrightarrow b } \right)} \right|^2} + 4{\left( {\overrightarrow a \,.\,\overrightarrow b } \right)^2}$$

$$ \Rightarrow 4{\left( {\overrightarrow a \times \overrightarrow b } \right)^2} + {\left( {\overrightarrow a \,.\,\overrightarrow b } \right)^2}$$

$$ \Rightarrow 4{\left| {\overrightarrow a } \right|^2}{\left| {\overrightarrow b } \right|^2} = 4\,.\,16\,.\,9 = 576$$

Comments (0)

Advertisement