Match List I with List II.
LIST I |
LIST II |
||
---|---|---|---|
A. | $$ \mathrm{ICl} $$ |
I. | T - shape |
B. | $$ \mathrm{ICl}_3 $$ |
II. | Square pyramidal |
C. | $$ \mathrm{ClF}_5 $$ |
III. | Pentagonal bipyramidal |
D. | $$ \mathrm{IF}_7 $$ |
IV. | Linear |
Choose the correct answer from the options given below :
Given below are two statements :
Statement I : On passing $$\mathrm{HCl}_{(\mathrm{g})}$$ through a saturated solution of $$\mathrm{BaCl}_2$$, at room temperature white turbidity appears.
Statement II : When $$\mathrm{HCl}$$ gas is passed through a saturated solution of $$\mathrm{NaCl}$$, sodium chloride is precipitated due to common ion effect.
In the light of the above statements, choose the most appropriate answer from the options given below :
Match List - I with List - II.
LIST I (Pair of Compounds) |
LIST II (Isomerism) |
||
---|---|---|---|
A. | n-propanol and Isopropanol | I. | Metamerism |
B. | Methoxypropane and ethoxyethane | II. | Chain Isomerism |
C. | Propanone and propanal | III. | Position Isomerism |
D. | Neopentane and Isopentane | IV. | Functional Isomerism |
Choose the correct answer from the options given below :
Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A) : $$\mathrm{NH}_3$$ and $$\mathrm{NF}_3$$ molecule have pyramidal shape with a lone pair of electrons on nitrogen atom. The resultant dipole moment of $$\mathrm{NH}_3$$ is greater than that of $$\mathrm{NF}_3$$.
Reason (R) : In $$\mathrm{NH}_3$$, the orbital dipole due to lone pair is in the same direction as the resultant dipole moment of the $$\mathrm{N}-\mathrm{H}$$ bonds. $$\mathrm{F}$$ is the most electronegative element.
In the light of the above statements, choose the correct answer from the options given below :
The correct statements from the following are :
(A) The decreasing order of atomic radii of group 13 elements is $$\mathrm{Tl}>\mathrm{In}>\mathrm{Ga}>\mathrm{Al}>\mathrm{B}$$.
(B) Down the group 13 electronegativity decreases from top to bottom.
(C) $$\mathrm{Al}$$ dissolves in dil. $$\mathrm{HCl}$$ and liberates $$\mathrm{H}_2$$ but conc. $$\mathrm{HNO}_3$$ renders $$\mathrm{Al}$$ passive by forming a protective oxide layer on the surface.
(D) All elements of group 13 exhibits highly stable +1 oxidation state.
(E) Hybridisation of $$\mathrm{Al}$$ in $$[\mathrm{Al}(\mathrm{H}_2 \mathrm{O})_6]^{3+}$$ ion is $$\mathrm{sp}^3 \mathrm{d}^2$$.
Choose the correct answer from the options given below :
For the electro chemical cell
$$\mathrm{M}\left|\mathrm{M}^{2+}\right||\mathrm{X}| \mathrm{X}^{2-}$$
If $$\mathrm{E}_{\left(\mathrm{M}^{2+} / \mathrm{M}\right)}^0=0.46 \mathrm{~V}$$ and $$\mathrm{E}_{\left(\mathrm{x} / \mathrm{x}^{2-}\right)}^0=0.34 \mathrm{~V}$$.
Which of the following is correct?
Given below are two statements :
Statement I : The metallic radius of $$\mathrm{Na}$$ is $$1.86 \mathrm{~A}^{\circ}$$ and the ionic radius of $$\mathrm{Na}^{+}$$ is lesser than $$1.86 \mathrm{~A}^{\circ}$$
Statement II : Ions are always smaller in size than the corresponding elements.
In the light of the above statements, choose the correct answer from the options given below :
Considering acetic acid dissociates in water, its dissociation constant is $$6.25 \times 10^{-5}$$. If $$5 \mathrm{~mL}$$ of acetic acid is dissolved in 1 litre water, the solution will freeze at $$-x \times 10^{-2}{ }^{\circ} \mathrm{C}$$, provided pure water freezes at $$0{ }^{\circ} \mathrm{C}$$.
$$x=$$ _________. (Nearest integer)
$$\begin{aligned} \text{Given :} \quad & \left(\mathrm{K}_{\mathrm{f}}\right)_{\text {water }}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}-1 \\ & \text { density of acetic acid is } 1.2 \mathrm{~g} \mathrm{~mol}^{-1} \text {. } \\ & \text { molar mass of water }=18 \mathrm{~g} \mathrm{~mol}^{-1} \text {. } \\ & \text { molar mass of acetic acid= } 60 \mathrm{~g} \mathrm{~mol}^{-1} \text {. } \\ & \text { density of water }=1 \mathrm{~g} \mathrm{~cm}^{-3} \end{aligned}$$
Acetic acid dissociates as $$\mathrm{CH}_3 \mathrm{COOH} \rightleftharpoons \mathrm{CH}_3 \mathrm{COO}^{\ominus}+\mathrm{H}^{\oplus}$$
Consider the following single step reaction in gas phase at constant temperature.
$$2 \mathrm{~A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}$$
The initial rate of the reaction is recorded as $$\mathrm{r}_1$$ when the reaction starts with $$1.5 \mathrm{~atm}$$ pressure of $$\mathrm{A}$$ and $$0.7 \mathrm{~atm}$$ pressure of B. After some time, the rate $$r_2$$ is recorded when the pressure of C becomes $$0.5 \mathrm{~atm}$$. The ratio $$\mathrm{r}_1: \mathrm{r}_2$$ is _________ $$\times 10^{-1}$$. (Nearest integer)
The fusion of chromite ore with sodium carbonate in the presence of air leads to the formation of products $$\mathrm{A}$$ and $$\mathrm{B}$$ along with the evolution of $$\mathrm{CO}_2$$. The sum of spin-only magnetic moment values of A and B is _________ B.M. (Nearest integer)
[Given atomic number : $$\mathrm{C}: 6, \mathrm{Na}: 11, \mathrm{O}: 8, \mathrm{Fe}: 26, \mathrm{Cr}: 24$$]
Combustion of 1 mole of benzene is expressed at
$$\mathrm{C}_6 \mathrm{H}_6(\mathrm{l})+\frac{15}{2} \mathrm{O}_2(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_2(\mathrm{~g})+3 \mathrm{H}_2 \mathrm{O}(\mathrm{l}) \text {. }$$
The standard enthalpy of combustion of $$2 \mathrm{~mol}$$ of benzene is $$-^{\prime} x^{\prime} \mathrm{kJ}$$. $$x=$$ __________.
Given :
1. standard Enthalpy of formation of $$1 \mathrm{~mol}$$ of $$\mathrm{C}_6 \mathrm{H}_6(\mathrm{l})$$, for the reaction $$6 \mathrm{C}$$ (graphite) $$+3 \mathrm{H}_2(\mathrm{g}) \rightarrow \mathrm{C}_6 \mathrm{H}_6(\mathrm{l})$$ is $$48.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$$.
2. Standard Enthalpy of formation of $$1 \mathrm{~mol}$$ of $$\mathrm{CO}_2(\mathrm{g})$$, for the reaction $$\mathrm{C}$$ (graphite) $$+\mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{CO}_2(\mathrm{g})$$ is $$-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$$.
3. Standard and Enthalpy of formation of $$1 \mathrm{~mol}$$ of $$\mathrm{H}_2 \mathrm{O}(\mathrm{l})$$, for the reaction $$\mathrm{H}_2(\mathrm{g})+\frac{1}{2} \mathrm{O}_2(\mathrm{g}) \rightarrow \mathrm{H}_2 \mathrm{O}(\mathrm{l})$$ is $$-286 \mathrm{~kJ} \mathrm{~mol}^{-1}$$.