Let the circles
C
1 : x
2 + y
2 = 9 and C
2 : (x $$-$$ 3)
2 + (y $$-$$ 4)
2 = 16, intersect at the points X and Y. Suppose that another circle C
3 : (x $$-$$ h)
2 + (y $$-$$ k)
2 = r
2 satisfies the following conditions :
(i) Centre of C
3 is collinear with the centres of C
1 and C
2.
(ii) C
1 and C
2 both lie inside C
3 and
(iii) C
3 touches C
1 at M and C
2 at N.
Let the line through X and Y intersect C
3 at Z and W, and let a common tangent of C
1 and C
3 be a tangent to the parabola x
2 = 8$$\alpha $$y.
There are some expression given in the List-I whose values are given in List-II below.

Which of the following is the only INCORRECT combination?