JEE Advance - Mathematics (2019 - Paper 2 Offline - No. 7)
Let x $$ \in $$ R and let $$P = \left[ {\matrix{
1 & 1 & 1 \cr
0 & 2 & 2 \cr
0 & 0 & 3 \cr
} } \right]$$, $$Q = \left[ {\matrix{
2 & x & x \cr
0 & 4 & 0 \cr
x & x & 6 \cr
} } \right]$$ and R = PQP$$-$$1, which of the following options is/are correct?
There exists a real, number x such that PQ = QP
For $$x = 0$$, if $$R \left[ {\matrix{
1 \cr
a \cr
b \cr
} } \right] = 6\left[ {\matrix{
1 \cr
a \cr
b \cr
} } \right]$$, then a + b =5
For x = 1, there exists a unit vector $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ for which $$R\left[ {\matrix{
\alpha \cr
\beta \cr
\gamma \cr
} } \right] = \left[ {\matrix{
0 \cr
0 \cr
0 \cr
} } \right]$$
$$\det R = \det \left[ {\matrix{
2 & x & x \cr
0 & 4 & 0 \cr
x & x & 5 \cr
} } \right] + 8$$, for all x $$ \in $$ R
Explanation
It is given, that matrices
$$P = \left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]$$, $$Q = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right]$$
$$ \therefore $$ $${P^{ - 1}} = {{adj(P)} \over {|P|}}$$
as |P| = 6 and adj P = $${\left[ {\matrix{ 6 & 0 & 0 \cr { - 3} & 3 & 0 \cr 0 & { - 2} & 2 \cr } } \right]^T}$$
$$ \Rightarrow $$ $${P^{ - 1}} = {1 \over 6}\left[ {\matrix{ 6 & { - 3} & 0 \cr 0 & 3 & { - 2} \cr 0 & 0 & 2 \cr } } \right]$$
$$ \therefore $$ |R| = |PQP$$-$$1| [$$ \because $$ R = PQP$$-$$1 (given)]
$$ \Rightarrow $$ |R| = |P||Q||P$$-$$1| = |Q| [$$ \because $$ |P| |P$$-$$1| = |I| = 1]
$$ = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right] = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 5 \cr } } \right] + \left[ {\matrix{ 2 & x & 0 \cr 0 & 4 & 0 \cr x & x & 1 \cr } } \right]$$
$$ = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 5 \cr } } \right] + 2(4 - 0) - x(0 - 0) + 0(0 - 4x)$$
$$ = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 5 \cr } } \right] + 8$$, for all x $$ \in $$ R
$$ \because $$ $$PQ = \left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]\left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right] = \left[ {\matrix{ {2 + x} & {4 + 2x} & {x + 6} \cr {2x} & {2x + 8} & {12} \cr {3x} & {3x} & {18} \cr } } \right]$$
and $$QP = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right]\left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right] = \left[ {\matrix{ 2 & {2 + 2x} & {2 + 5x} \cr 0 & 8 & 8 \cr x & {3x} & {3x + 18} \cr } } \right]$$
There is no common value of 'x', for which each corresponding element of matrices PQ and QP is equal.
For x = 0, $$Q = \left[ {\matrix{ 2 & 0 & 0 \cr 0 & 4 & 0 \cr 0 & 0 & 6 \cr } } \right]$$
then, if $$R\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$
$$ \Rightarrow $$ $$PQ{P^{ - 1}}\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$ [$$ \because $$ R = PQP$$-$$1]
$$ \Rightarrow {1 \over 6}\left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]\left[ {\matrix{ 2 & 0 & 0 \cr 0 & 4 & 0 \cr 0 & 0 & 6 \cr } } \right]\left[ {\matrix{ 6 & { - 3} & 0 \cr 0 & 3 & { - 2} \cr 0 & 0 & 2 \cr } } \right]\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$
$$ \Rightarrow {1 \over 6}\left[ {\matrix{ 2 & 4 & 6 \cr 0 & 8 & {12} \cr 0 & 0 & {18} \cr } } \right]\left[ {\matrix{ 6 & { - 3} & 0 \cr 0 & 3 & { - 2} \cr 0 & 0 & 2 \cr } } \right]\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$
$$ \Rightarrow \left[ {\matrix{ {12} & 6 & 4 \cr 0 & {24} & 8 \cr 0 & 0 & {36} \cr } } \right]\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 36\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$
$$ \Rightarrow \left[ {\matrix{ {12} & + & {6a} & + & {4b} \cr 0 & + & {24a} & + & {8b} \cr 0 & + & 0 & + & {36b} \cr } } \right] = \left[ {\matrix{ {36} \cr {36a} \cr {36b} \cr } } \right]$$
$$ \Rightarrow 6a + 4b = 24$$ and $$12a = 8b$$
$$ \Rightarrow 3a + 2b = 12$$ and $$3a = 2b$$
$$ \Rightarrow a = 2$$ and $$b = 3$$
So, a + b = 5.
Now, $$R\left[ {\matrix{ \alpha \cr \beta \cr \gamma \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
and $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ is a unit vector,
so det (R) = 0
$$ \Rightarrow $$ det (Q) = 0 [$$ \because $$ R = PQP$$-$$1 So, |R| = |Q|]
$$ \Rightarrow \left| {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right| = 0$$
$$ \Rightarrow 2(24 - 0) - x(0 - 0) + x(0 - 4x) = 0 \Rightarrow 48 - 4{x^2} = 0$$
$$ \Rightarrow {x^2} = 12 \Rightarrow x = \pm 2\sqrt 3 $$
So, for x = 1, there does not exist a unit vector $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k$$, for which $$R\left[ {\matrix{ \alpha \cr \beta \cr \gamma \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
Hence, options (b) and (d) are correct.
$$P = \left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]$$, $$Q = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right]$$
$$ \therefore $$ $${P^{ - 1}} = {{adj(P)} \over {|P|}}$$
as |P| = 6 and adj P = $${\left[ {\matrix{ 6 & 0 & 0 \cr { - 3} & 3 & 0 \cr 0 & { - 2} & 2 \cr } } \right]^T}$$
$$ \Rightarrow $$ $${P^{ - 1}} = {1 \over 6}\left[ {\matrix{ 6 & { - 3} & 0 \cr 0 & 3 & { - 2} \cr 0 & 0 & 2 \cr } } \right]$$
$$ \therefore $$ |R| = |PQP$$-$$1| [$$ \because $$ R = PQP$$-$$1 (given)]
$$ \Rightarrow $$ |R| = |P||Q||P$$-$$1| = |Q| [$$ \because $$ |P| |P$$-$$1| = |I| = 1]
$$ = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right] = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 5 \cr } } \right] + \left[ {\matrix{ 2 & x & 0 \cr 0 & 4 & 0 \cr x & x & 1 \cr } } \right]$$
$$ = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 5 \cr } } \right] + 2(4 - 0) - x(0 - 0) + 0(0 - 4x)$$
$$ = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 5 \cr } } \right] + 8$$, for all x $$ \in $$ R
$$ \because $$ $$PQ = \left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]\left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right] = \left[ {\matrix{ {2 + x} & {4 + 2x} & {x + 6} \cr {2x} & {2x + 8} & {12} \cr {3x} & {3x} & {18} \cr } } \right]$$
and $$QP = \left[ {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right]\left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right] = \left[ {\matrix{ 2 & {2 + 2x} & {2 + 5x} \cr 0 & 8 & 8 \cr x & {3x} & {3x + 18} \cr } } \right]$$
There is no common value of 'x', for which each corresponding element of matrices PQ and QP is equal.
For x = 0, $$Q = \left[ {\matrix{ 2 & 0 & 0 \cr 0 & 4 & 0 \cr 0 & 0 & 6 \cr } } \right]$$
then, if $$R\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$
$$ \Rightarrow $$ $$PQ{P^{ - 1}}\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$ [$$ \because $$ R = PQP$$-$$1]
$$ \Rightarrow {1 \over 6}\left[ {\matrix{ 1 & 1 & 1 \cr 0 & 2 & 2 \cr 0 & 0 & 3 \cr } } \right]\left[ {\matrix{ 2 & 0 & 0 \cr 0 & 4 & 0 \cr 0 & 0 & 6 \cr } } \right]\left[ {\matrix{ 6 & { - 3} & 0 \cr 0 & 3 & { - 2} \cr 0 & 0 & 2 \cr } } \right]\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$
$$ \Rightarrow {1 \over 6}\left[ {\matrix{ 2 & 4 & 6 \cr 0 & 8 & {12} \cr 0 & 0 & {18} \cr } } \right]\left[ {\matrix{ 6 & { - 3} & 0 \cr 0 & 3 & { - 2} \cr 0 & 0 & 2 \cr } } \right]\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 6\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$
$$ \Rightarrow \left[ {\matrix{ {12} & 6 & 4 \cr 0 & {24} & 8 \cr 0 & 0 & {36} \cr } } \right]\left[ {\matrix{ 1 \cr a \cr b \cr } } \right] = 36\left[ {\matrix{ 1 \cr a \cr b \cr } } \right]$$
$$ \Rightarrow \left[ {\matrix{ {12} & + & {6a} & + & {4b} \cr 0 & + & {24a} & + & {8b} \cr 0 & + & 0 & + & {36b} \cr } } \right] = \left[ {\matrix{ {36} \cr {36a} \cr {36b} \cr } } \right]$$
$$ \Rightarrow 6a + 4b = 24$$ and $$12a = 8b$$
$$ \Rightarrow 3a + 2b = 12$$ and $$3a = 2b$$
$$ \Rightarrow a = 2$$ and $$b = 3$$
So, a + b = 5.
Now, $$R\left[ {\matrix{ \alpha \cr \beta \cr \gamma \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
and $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k$$ is a unit vector,
so det (R) = 0
$$ \Rightarrow $$ det (Q) = 0 [$$ \because $$ R = PQP$$-$$1 So, |R| = |Q|]
$$ \Rightarrow \left| {\matrix{ 2 & x & x \cr 0 & 4 & 0 \cr x & x & 6 \cr } } \right| = 0$$
$$ \Rightarrow 2(24 - 0) - x(0 - 0) + x(0 - 4x) = 0 \Rightarrow 48 - 4{x^2} = 0$$
$$ \Rightarrow {x^2} = 12 \Rightarrow x = \pm 2\sqrt 3 $$
So, for x = 1, there does not exist a unit vector $$\alpha \widehat i + \beta \widehat j + \gamma \widehat k$$, for which $$R\left[ {\matrix{ \alpha \cr \beta \cr \gamma \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
Hence, options (b) and (d) are correct.
Comments (0)
