JEE Advance - Mathematics (2019 - Paper 2 Offline - No. 15)

Let f(x) = sin($$\pi $$ cos x) and g(x) = cos(2$$\pi $$ sin x) be two functions defined for x > 0. Define the following sets whose elements are written in the increasing order:

X = {x : f(x) = 0}, Y = {x : f'(x) = 0}

Z = {x : g(x) = 0}, W = {x : g'(x) = 0}

List - I contains the sets X, Y, Z and W. List - II contains some information regarding these sets.

JEE Advanced 2019 Paper 2 Offline Mathematics - Trigonometric Functions & Equations Question 14 English

Which of the following is the only CORRECT combination?
(IV), (P), (R), (S)
(III), (P), (Q), (U)
(III), (R), (U)
(IV), (Q), (T)

Explanation

For Z = {x : g(x) = 0}, x > 0

$$ \because $$ g(x) = cos(2$$\pi $$ sin x) = 0

$$ \Rightarrow $$ $$2\pi \sin x = (2n + 1){\pi \over 2},\,n \in $$ Integer

$$ \Rightarrow $$ $$\sin x = - {3 \over 4}, - {1 \over 4},{1 \over 4},{3 \over 4}$$ [$$ \because $$ sin x $$ \in $$ [$$-$$1, 1]]

here values of sin x, $$ - {3 \over 4}, - {1 \over 4},{1 \over 4},{3 \over 4}$$ are in an A.P. but corresponding values of x are not in an AP so, (iii) $$ \to $$ R.

For W = {x : g'(x) = 0}, x > 0

So, g'(x) = $$-$$2 $$\pi $$ cos x sin(2$$\pi $$ sin x) = 0

$$ \Rightarrow $$ either cos x = 0 or sin(2$$\pi $$ sin x) = 0

$$ \Rightarrow $$ either $$x = (2n + 1){\pi \over 2}$$ or 2$$\pi $$ sin x = n$$\pi $$, n$$ \in $$ Integers.

$$ \because $$ $$2\pi \sin x = nx$$

$$ \Rightarrow $$ $$\sin x = {n \over 2} = - 1, - {1 \over 2},0,{1 \over 2},1$$ {$$ \because $$ sin x $$ \in $$[$$-$$1, 1)}

$$ \because $$ $$x = n\pi ,\,(2n + 1){\pi \over 2}$$ or $$x = n\pi + {( - 1)^n}\left( { \pm {\pi \over 6}} \right)$$

$$ \Rightarrow $$ (iv) $$ \to $$ P, R, S

Hence, option (a) is correct.

Comments (0)

Advertisement