JEE Advance - Mathematics (2009 - Paper 2 Offline)

1
Then the number of such points for which $$x^2 + {y^2} + {z^2} \le 100$$ is
Answer
7
2
If the sum of first $$n$$ terms of an A.P. is $$c{n^2}$$, then the sum of squares of these $$n$$ terms is
Answer
(C)
$${{n\left( {4{n^2} - 1} \right){c^2}} \over 3}$$
3
The centres of two circles $${C_1}$$ and $${C_2}$$ each of unit radius are at a distance of 6 units from each other. Let P be the mid point of the line segement joining the centres of $${C_1}$$ and $${C_2}$$ and C a circle touching circles $${C_1}$$ and $${C_2}$$ externally. If a common tangent to $${C_1}$$ and passing through P is also a common tangent to $${C_2}$$ and C, then the radius of the circle C is
Answer
8
4
The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$ meets the $$x$$- axis $$Q$$. If $$M$$ is the mid point of the line segment $$PQ$$, then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points
Answer
(C)
$$\left( { \pm 2\sqrt 3 , \pm {1 \over 7}} \right)$$
5
A line with positive direction cosines passes through the point P(2, $$-$$1, 2) and makes equal angles with the coordinate axes. The line meets the plane $$2x + y + z = 9$$ at point Q. The length of the line segment PQ equals
Answer
(C)
$${\sqrt 3 }$$
6
Let $$f:R \to R$$ be a continuous function which satisfies $$f(x) = \int\limits_0^x {f(t)dt} $$. Then, the value of $$f(\ln 5)$$ is ____________.
Answer
0
7
If $${I_n} = \int\limits_{ - \pi }^\pi {{{\sin nx} \over {(1 + {\pi ^x})\sin x}}dx,n = 0,1,2,} $$ .... then
Answer
A
B
C
8
The maximum value of the function $$f(x) = 2{x^3} - 15{x^2} + 36x - 48$$ on the set $$A = \{ x|{x^2} + 20 \le 9x|\} $$ is __________.
Answer
7
9
Let $$p(x)$$ be a polynomial of degree $$4$$ having extremum at

$$x = 1,2$$ and $$\mathop {\lim }\limits_{x \to 0} \left( {1 + {{p\left( x \right)} \over {{x^2}}}} \right) = 2$$.

Then the value of $$p (2)$$ is

Answer
0
10
For the function $$$f\left( x \right) = x\cos \,{1 \over x},x \ge 1,$$$
Answer
B
C
D
11
Let ABC and ABC' be two non-congruent triangles with sides AB = 4, AC = AC' = 2$$\sqrt2$$ and angle B = 30$$^\circ$$. The absolute value of the difference between the areas of these triangles is ___________.
Answer
4
12
If the function $$f(x) = {x^3} + {e^{x/2}}$$ and $$g(x) = {f^{ - 1}}(x)$$, then the value of $$g'(1)$$ is _________.
Answer
2
13
An ellipse intersects the hyperbola $$2{x^2} - 2{y^2} = 1$$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes then
Answer
A
B
14
The tangent $$PT$$ and the normal $$PN$$ to the parabola $${y^2} = 4ax$$ at a point $$P$$ on it meet its axis at points $$T$$ and $$N$$, respectively. The locus of the centroid of the triangle $$PTN$$ is a parabola whose
Answer
A
D
15
The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$ meets the $$x$$- axis $$Q$$. If $$M$$ is the mid point of the line segment $$PQ$$, then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points
Answer
(C)
$$\left( { \pm 2\sqrt 3 , \pm {1 \over 7}} \right)$$
16
The centres of two circles $${C_1}$$ and $${C_2}$$ each of unit radius are at a distance of 6 units from each other. Let P be the mid point of the line segement joining the centres of $${C_1}$$ and $${C_2}$$ and C a circle touching circles $${C_1}$$ and $${C_2}$$ externally. If a common tangent to $${C_1}$$ and passing through P is also a common tangent to $${C_2}$$ and C, then the radius of the circle C is
Answer
8
17
If the sum of first $$n$$ terms of an A.P. is $$c{n^2}$$, then the sum of squares of these $$n$$ terms is
Answer
(C)
$${{n\left( {4{n^2} - 1} \right){c^2}} \over 3}$$
18
The smallest value of $$k$$, for which both the roots of the equation $$${x^2} - 8kx + 16\left( {{k^2} - k + 1} \right) = 0$$$ are real, distinct and have values at least 4, is
Answer
2
19
The locus of the orthocentre of the triangle formed by the lines

$$(1 + p)x - py + p(1 + p) = 0, $$

$$(1 + q)x - qy + q(1 + q) = 0$$

and $$y = 0$$, where $$p \ne q$$, is :
Answer
(D)
a straight line.