JEE Advance - Mathematics (2009 - Paper 2 Offline - No. 10)
Explanation
We have for
$$f(x) = x\cos \left( {{1 \over x}} \right),x \ge 1$$
$$f'(x) = \cos \left( {{1 \over x}} \right) + {1 \over x}\sin \left( {{1 \over x}} \right) \to 1$$ for $$x \to \infty $$
Also,
$$f'(x) = \left( {{1 \over x}} \right) + {1 \over x}\sin \left( {{1 \over x}} \right) - {1 \over {{x^2}}}\sin \left( {{1 \over x}} \right) - {1 \over {{x^3}}}\cos \left( {{1 \over x}} \right)$$
$$ = - {1 \over {{x^3}}}\cos \left( {{1 \over x}} \right) < 0$$ for $$x \ge 1$$
$$ \Rightarrow f'(x)$$ is decreasing for $$[1,\infty )$$
$$ \Rightarrow f'(x + 2) < f'(x)$$. Also,
$$\mathop {\lim }\limits_{x \to \infty } f(x + 2) - f(x) = \mathop {\lim }\limits_{x \to \infty } \left[ {(x + 2)\cos {1 \over {x + 2}} - x\cos {1 \over x}} \right]=2$$
Hence, $$f(x + 2) - f(x) > 2\forall x \ge 1$$.
Comments (0)
