If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w ,$$ are three non-coplanar unit vectors and $$\alpha ,\beta ,\gamma $$ are the angles between $$\overrightarrow u $$ and $$\overrightarrow v $$ and $$\overrightarrow w ,$$ $$\overrightarrow w $$ and $$\overrightarrow u $$ respectively and $$\overrightarrow x ,\overrightarrow y ,\overrightarrow z ,$$ are unit vectors along the bisectors of the angles $$\alpha ,\,\,\beta ,\,\,\gamma $$ respectively. Prove that $$\,\left[ {\overrightarrow x \times \overrightarrow y \,\,\overrightarrow y \times \overrightarrow z \,\,\overrightarrow z \times \overrightarrow x } \right] = {1 \over {16}}{\left[ {\overrightarrow u \,\,\overrightarrow v \,\,\overrightarrow w } \right]^2}\,{\sec ^2}{\alpha \over 2}{\sec ^2}{\beta \over 2}{\sec ^2}{\gamma \over 2}.$$