Find the area of the region in the third quadrant bounded by the curves $$x = - 2{y^2}$$ and $$y=f(x)$$ lying on the left of the line $$8x+1=0.$$
Answer
(A)
257/192 sq. units
4
A solution of the differential equation
$${\left( {{{dy} \over {dx}}} \right)^2} - x{{dy} \over {dx}} + y = 0$$ is
Answer
(C)
$$y=2x-4$$
5
The differential equation representing the family of curves
$${y^2} = 2c\left( {x + \sqrt c } \right),$$ where $$c$$ is a positive parameter, is of
Answer
A
C
6
If the integers $$m$$ and $$n$$ are chosen at random from $$1$$ to $$100$$, then the probability that a number of the form $${7^m} + {7^n}$$ is divisible by $$5$$ equals
Answer
(A)
$$1/4$$
7
The probabilities that a student passes in Mathematics, Physics and Chemistry are $$m, p$$ and $$c,$$ respectively. Of these subjects, the student has a $$75%$$ chance of passing in at least one, a $$50$$% chance of passing in at least two, and a $$40$$% chance of passing in exactly two. Which of the following relations are true?
Answer
C
B
8
Eight players $${P_1},{P_2},.....{P_8}$$ play a knock-out tournament. It is known that whenever the players $${P_i}$$ and $${P_j}$$ play, the player $${P_i}$$ will win if $$i < j.$$ Assuming that the players are paired at random in each round, what is the probability that the player $${P_4}$$ reaches the final?
Answer
(D)
4/35
9
Let $$a=2i+j-2k$$ and $$b=i+j.$$ If $$c$$ is a vector such that $$a.$$ $$c = \left| c \right|,\left| {c - a} \right| = 2\sqrt 2 $$ and the angle between $$\left( {a \times b} \right)$$ and $$c$$ is $${30^ \circ },$$ then $$\left| {\left( {a \times b} \right) \times c} \right| = $$
Answer
(B)
$$3/2$$
10
Let $$a=2i+j+k, b=i+2j-k$$ and a unit vector $$c$$ be coplanar. If $$c$$ is perpendicular to $$a,$$ then $$c =$$
Answer
(A)
$${1 \over {\sqrt 2 }}\left( { - j + k} \right)$$
11
Let $$a$$ and $$b$$ two non-collinear unit vectors. If $$u = a - \left( {a\,.\,b} \right)\,b$$ and $$v = a \times b,$$ then $$\left| v \right|$$ is
Answer
A
C
12
Let $$u$$ and $$v$$ be units vectors. If $$w$$ is a vector such that $$w + \left( {w \times u} \right) = v,$$ then prove that $$\left| {\left( {u \times v} \right) \cdot w} \right| \le 1/2$$ and that the equality holds if and only if $$u$$ is perpendicular to $$v .$$
Answer
(D)
The magnitude of the scalar triple product (u x v) . w is always less than or equal to 1/2 and equality holds if and only if u is perpendicular to v.
13
$$\int\limits_{\pi /4}^{3\pi /4} {{{dx} \over {1 + \cos x}}} $$ is equal to
Answer
(A)
$$2$$
14
If two distinct chords, drawn from the point (p, q) on the circle $${x^2}\, + \,{y^2} = \,px\, + \,qy\,\,(\,where\,pq\, \ne \,0)$$ are bisected by the x - axis, then
For complex numbers z and w, prove that $${\left| z \right|^2}w - {\left| w \right|^2}z = z - w$$ if and only if $$ z = w\,or\,z\overline {\,w} = 1$$.
Answer
(A)
The statement is true and the provided condition is both necessary and sufficient.
18
If the roots of the equation $${x^2} - 2ax + {a^2} + a - 3 = 0$$ are real and less than 3, then
Answer
(A)
$$a < 2$$
19
If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$ the coefficients of $$x$$ and $${x^2}$$ are $$3$$ and $$-6$$ respectively, then $$m$$ is
Answer
(C)
12
20
for each non-be gatuve integer $$m \le n.$$ $$\,\left( {Here\left( {\matrix{
p \cr
q \cr
} } \right) = {}^p{C_q}} \right).$$
Answer
C
E
21
Let $${a_1},{a_2},......{a_{10}}$$ be in $$A,\,P,$$ and $${h_1},{h_2},......{h_{10}}$$ be in H.P. If $${a_1} = {h_1} = 2$$ and $${a_{10}} = {h_{10}} = 3,$$ then $${a_4}{h_7}$$ is
Answer
(D)
6
22
The harmonic mean of the roots of the equation $$\left( {5 + \sqrt 2 } \right){x^2} - \left( {4 + \sqrt 5 } \right)x + 8 + 2\sqrt 5 = 0$$ is
Answer
(B)
4
23
Let a, b, c, d be real numbers in G.P. If u, v, w, satisfy the system of equations
u + 2v + 3w = 6
4u + 5v + 6w = 12
6u + 9v = 4
then show that the roots of the equation $$\left( {{1 \over u} + {1 \over v} + {1 \over w}} \right){x^2}$$
$$ + [{(b - c)^2} + {(c - a)^2} + {(d - b)^2}]x + u + v + w = 0$$ and $$20{x^2} + 10{(a - d)^2}x - 9 = 0$$ are reciprocals of each other.
Answer
(B)
The roots of both equations are real, and one root of each equation is the reciprocal of a root of the other.
24
For a positive integer $$n$$, let
$$a\left( n \right) = 1 + {1 \over 2} + {1 \over 3} + {1 \over 4} + .....\,{1 \over {\left( {{2^n}} \right) - 1}}$$. Then
Answer
A
D
25
Lt $$PQR$$ be a right angled isosceles triangle, right angled at $$P(2, 1)$$. If the equation of the line $$QR$$ is $$2x + y = 3,$$ then the equation representing the pair of lines $$PQ$$ and $$PR$$ is
Answer
(B)
$$3{x^2} - 3{y^2} + 8xy - 20x - 10y + 25 = 0$$
26
If $${x_1},\,{x_2},\,{x_3}$$ as well as $${y_1},\,{y_2},\,{y_3}$$, are in G.P. with the same common ratio, then the points $$\left( {{x_1},\,{y_1}} \right),\left( {{x_2},\,{y_2}} \right)$$ and $$\left( {{x_3},\,{y_3}} \right).$$
Answer
(A)
lie on a straight line
27
Let $${L_1}$$ be a straight line passing through the origin and $${L_2}$$ be the straight line $$x + y = 1$$. If the intercepts made by the circle $${x^2} + {y^2} - x + 3y = 0$$ on $${L_1}$$ and $${L_2}$$ are equal, then which of the following equations can represent $${L_1}$$?
Answer
B
C
28
In a triangle $$PQR,\angle R = \pi /2$$. If $$\,\,\tan \left( {P/2} \right)$$ and $$\tan \left( {Q/2} \right)$$ are the roots of the equation $$a{x^2} + bx + c = 0\left( {a \ne 0} \right)$$ then.
Answer
(A)
$$a + b = c$$
29
Let $${T_1}$$, $${T_2}$$ be two tangents drawn from (- 2, 0) onto the circle $$C:{x^2}\,\, + \,{y^2} = 1$$. Determine the circles touching C and having $${T_1}$$, $${T_2}$$ as their pair of tangents. Further, find the equations of all possible common tangents to these circles, when taken two at a time.
Answer
A
B
C
D
30
If $$(h, k)$$ is the point of intersection of the normals at $$P$$ and $$Q$$, then $$k$$ is equal to
Answer
(D)
$$ - \left( {{{{a^2} + {b^2}} \over b}} \right)$$
31
The curve described parametrically by $$x = {t^2} + t + 1,$$ $$y = {t^2} - t + 1 $$ represents
Answer
(C)
a parabola
32
If $$x$$ $$=$$ $$9$$ is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$ then the equation of the vcorresponding pair of tangents is
Answer
(B)
$$9{x^2} - 8{y^2} - 18x + 9 = 0$$
33
On the ellipse $$4{x^2} + 9{y^2} = 1,$$ the points at which the tangents are parallel to the line $$8x = 9y$$ are
Answer
B
D
34
Find the co-ordinates of all the points $$P$$ on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, for which the area of the triangle $$PON$$ is maximum, where $$O$$ denotes the origin and $$N$$, the foot of the perpendicular from $$O$$ to the tangent at $$P$$.
Answer
A
B
C
D
35
Consider the family of circles $${x^2} + {y^2} = {r^2},\,\,2 < r < 5$$. If in the first quadrant, the common taingent to a circle of this family and the ellipse $$4{x^2} + 25{y^2} = 100$$ meets the co-ordinate axes at $$A$$ and $$B$$, then find the equation of the locus of vthe mid-point of $$AB$$.
Answer
(B)
25/x^2 + 4/y^2 = 4
36
Let $$ABC$$ be a triangle having $$O$$ and $$I$$ as its circumcenter and in centre respectively. If $$R$$ and $$r$$ are the circumradius and the inradius, respectively, then prove that $${\left( {IO} \right)^2} = {R^2} - 2{\mathop{\rm Rr}\nolimits} $$. Further show that the triangle BIO is a right-angled triangle if and only if $$b$$ is arithmetic mean of $$a$$ and $$c$$.
Answer
(B)
The distance between the incenter and circumcenter squared is equal to the circumradius squared minus twice the product of the circumradius and inradius.
37
The number of real solutions of
$${\tan ^{ - 1}}\,\,\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\,\,\sqrt {{x^2} + x + 1} = \pi /2$$ is
Answer
(C)
two
38
The function $$f(x)=$$ $${\sin ^4}x + {\cos ^4}x$$ increases if
Answer
(B)
$$\pi /4 < x < 3\pi /8$$
39
The function $$f\left( x \right) = \int\limits_{ - 1}^x {t\left( {{e^t} - 1} \right)\left( {t - 1} \right){{\left( {t - 2} \right)}^3}\,\,\,{{\left( {t - 3} \right)}^5}} $$ $$dt$$ has a local minimum at $$x=$$
-{1/2}log|x+1| + {1/4}log(x^2+1) + {3/2}tan^{-1}x + x/(1+x^2) + C
41
If for a real number $$y$$, $$\left[ y \right]$$ is the greatest integer less than or
equal to $$y$$, then the value of the integral $$\int\limits_{\pi /2}^{3\pi /2} {\left[ {2\sin x} \right]dx} $$ is