JEE Advance - Mathematics (1999 - No. 25)

Lt $$PQR$$ be a right angled isosceles triangle, right angled at $$P(2, 1)$$. If the equation of the line $$QR$$ is $$2x + y = 3,$$ then the equation representing the pair of lines $$PQ$$ and $$PR$$ is
$$3{x^2} - 3{y^2} + 8xy + 20x + 10y + 25 = 0$$
$$3{x^2} - 3{y^2} + 8xy - 20x - 10y + 25 = 0$$
$$3{x^2} - 3{y^2} + 8xy + 10x + 15y + 20 = 0$$
$$3{x^2} - 3{y^2} - 8xy - 10x - 15y - 20 = 0$$

Comments (0)

Advertisement