JEE MAIN - Mathematics (2025 - 3rd April Evening Shift)

1
The area of the region $\{(x, y):|x-y| \leq y \leq 4 \sqrt{x}\}$ is
Answer
(D)
$\frac{1024}{3}$
2
Line $L_1$ of slope 2 and line $L_2$ of slope $\frac{1}{2}$ intersect at the origin O . In the first quadrant, $\mathrm{P}_1$, $P_2, \ldots, P_{12}$ are 12 points on line $L_1$ and $Q_1, Q_2, \ldots, Q_9$ are 9 points on line $L_2$. Then the total number of triangles, that can be formed having vertices at three of the 22 points $\mathrm{O}, \mathrm{P}_1, \mathrm{P}_2, \ldots, \mathrm{P}_{12}$, $\mathrm{Q}_1, \mathrm{Q}_2, \ldots, \mathrm{Q}_9$, is:
Answer
(C)
1134
3
Each of the angles $\beta$ and $\gamma$ that a given line makes with the positive $y$ - and $z$-axes, respectively, is half of the angle that this line makes with the positive $x$-axes. Then the sum of all possible values of the angle $\beta$ is
Answer
(C)
$\frac{3 \pi}{4}$
4
$$If\,\,{z_1},{z_2},{z_3} \in \,\,are\,\,the\,\,vertices\,\,of\,\,an\,\,equilateral\,\,triangle,\,\,whose\,\,centroid\,\,is\,\,{z_0},\,\,then\,\,\sum\limits_{k = 1}^3 {{{\left( {{z_k} - {z_0}} \right)}^2}\,is\,\,equal\,\,to} $$
Answer
(A)
0
5
Let $C$ be the circle of minimum area enclosing the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ with eccentricity $\frac{1}{2}$ and foci $( \pm 2,0)$. Let $P Q R$ be a variable triangle, whose vertex $P$ is on the circle $C$ and the side $Q R$ of length $2 a$ is parallel to the major axis of $E$ and contains the point of intersection of $E$ with the negative $y$-axis. Then the maximum area of the triangle $P Q R$ is :
Answer
(B)
$8(2+\sqrt{3})$
6
The shortest distance between the curves $y^2=8 x$ and $x^2+y^2+12 y+35=0$ is:
Answer
(B)
$2 \sqrt{2}-1$
7
Consider the lines $x(3 \lambda+1)+y(7 \lambda+2)=17 \lambda+5, \lambda$ being a parameter, all passing through a point P. One of these lines (say $L$ ) is farthest from the origin. If the distance of $L$ from the point $(3,6)$ is $d$, then the value of $d^2$ is
Answer
(B)
20
8
Let $y=y(x)$ be the solution of the differential equation

$\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x, y(0)=\frac{1}{3}+e^3$. Then $y\left(\frac{\pi}{4}\right)$ is equal to :
Answer
(A)
$\frac{4}{3}$
9
Let $f$ be a function such that $f(x)+3 f\left(\frac{24}{x}\right)=4 x, x \neq 0$. Then $f(3)+f(8)$ is equal to
Answer
(B)
11
10
Let the equation $x(x+2)(12-k)=2$ have equal roots. Then the distance of the point $\left(k, \frac{k}{2}\right)$ from the line $3 x+4 y+5=0$ is
Answer
(A)
15
11
Let $A=\{-2,-1,0,1,2,3\}$. Let R be a relation on $A$ defined by $x \mathrm{R} y$ if and only if $y=\max \{x, 1\}$. Let $l$ be the number of elements in R . Let $m$ and $n$ be the minimum number of elements required to be added in R to make it reflexive and symmetric relations, respectively. Then $l+m+n$ is equal to
Answer
(B)
12
12
Let the Mean and Variance of five observations $x_1=1, x_2=3, x_3=a, x_4=7$ and $x_5=\mathrm{b}, a>\mathrm{b}$, be 5 and 10 respectively. Then the Variance of the observations $n+x_n, n=1,2, \ldots, 5$ is
Answer
(B)
16
13
The integral $\int_0^\pi \frac{8 x d x}{4 \cos ^2 x+\sin ^2 x}$ is equal to
Answer
(A)
$2 \pi^2$
14
The distance of the point $(7,10,11)$ from the line $\frac{x-4}{1}=\frac{y-4}{0}=\frac{z-2}{3}$ along the line $\frac{x-9}{2}=\frac{y-13}{3}=\frac{z-17}{6}$ is
Answer
(D)
14
15

If the probability that the random variable $X$ takes the value $x$ is given by

$P(X=x)=k(x+1) 3^{-x}, x=0,1,2,3 \ldots$, where $k$ is a constant, then $P(X \geq 3)$ is equal to

Answer
(A)
$\frac{1}{9}$
16

The number of solutions of the equation

$(4-\sqrt{3}) \sin x-2 \sqrt{3} \cos ^2 x=-\frac{4}{1+\sqrt{3}}, x \in\left[-2 \pi, \frac{5 \pi}{2}\right]$ is

Answer
(D)
5
17
If the domain of the function $f(x)=\log _7\left(1-\log _4\left(x^2-9 x+18\right)\right)$ is $(\alpha, \beta) \cup(\gamma, o)$, then $\alpha+\beta+\gamma+\hat{o}$ is equal to
Answer
(D)
18
18
Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined by $f(x)=||x+2|-2| x \|$. If $m$ is the number of points of local minima and $n$ is the number of points of local maxima of $f$, then $m+n$ is
Answer
(A)
3
19
The sum $1+\frac{1+3}{2!}+\frac{1+3+5}{3!}+\frac{1+3+5+7}{4!}+\ldots$ upto $\infty$ terms, is equal to
Answer
(B)
$2 e$
20
If the four distinct points $(4,6),(-1,5),(0,0)$ and $(k, 3 k)$ lie on a circle of radius $r$, then $10 k+r^2$ is equal to
Answer
(C)
35
21
$$If\,\,\mathop {\lim }\limits_{x \to 0} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}=p \text {, then } 96 \log _{\mathrm{e}} p \text { is equal to____________ }$$
Answer
32
22
If the equation of the hyperbola with foci $(4,2)$ and $(8,2)$ is $3 x^2-y^2-\alpha x+\beta y+\gamma=0$, then $\alpha+\beta+\gamma$ is equal to__________.
Answer
141
23
Let $\left(1+x+x^2\right)^{10}=a_0+a_1 x+a_2 x^2+\ldots+a_{20} x^{20}$. If $\left(a_1+a_3+a_5+\ldots+a_{19}\right)-11 a_2=121 k$, then $k$ is equal to_________ .
Answer
239
24
Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3 \hat{i}-3 \hat{j}+3 \hat{k}, \vec{c}=2 \hat{i}-\hat{j}+2 \hat{k}$ and $\vec{d}$ be a vector such that $\vec{b} \times \vec{d}=\vec{c} \times \vec{d}$ and $\vec{a} \cdot \vec{d}=4$. Then $|(\vec{a} \times \vec{d})|^2$ is equal to___________.
Answer
128
25
Let $I$ be the identity matrix of order $3 \times 3$ and for the matrix $A=\left[\begin{array}{ccc}\lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2\end{array}\right],|A|=-1$. Let $B$ be the inverse of the matrix $\operatorname{adj}\left(\operatorname{Aadj}\left(A^2\right)\right)$. Then $|(\lambda \mathrm{B}+\mathrm{I})|$ is equal to______
Answer
38OR-38