JEE MAIN - Mathematics (2025 - 3rd April Evening Shift - No. 19)
Explanation
The series given is:
$ 1 + \frac{1+3}{2!} + \frac{1+3+5}{3!} + \frac{1+3+5+7}{4!} + \ldots $
In general, the $ r $-th term of the series, denoted as $ T_r $, takes the form:
$ T_r = \frac{r^2}{r!} $
To simplify $ T_r $, we write it in terms of factorials:
$ T_r = \frac{r}{(r-1)!} = \frac{(r-1)+1}{(r-1)!} = \frac{1}{(r-2)!} + \frac{1}{(r-1)!} $
Thus, the series can be expressed as:
$ \sum\limits_{r=1}^{\infty} T_r = \sum\limits_{r=1}^{\infty} \left( \frac{1}{(r-2)!} + \frac{1}{(r-1)!} \right) $
This breaks into two parts:
$ = \sum\limits_{r=1}^{\infty} \frac{1}{(r-2)!} + \sum\limits_{r=1}^{\infty} \frac{1}{(r-1)!} $
Each part is a well-known series. Specifically:
$\sum\limits_{r=1}^{\infty} \frac{1}{(r-2)!} = e$, starting from the term where $ r-2 = 0$, which aligns with the expansion of $ e $.
$\sum\limits_{r=1}^{\infty} \frac{1}{(r-1)!} = e$, for the terms starting where $ r-1 = 0$.
Consequently, the sum of the entire series is:
$ e + e = 2e $
Comments (0)
