JEE MAIN - Mathematics (2025 - 3rd April Evening Shift - No. 13)
The integral $\int_0^\pi \frac{8 x d x}{4 \cos ^2 x+\sin ^2 x}$ is equal to
$2 \pi^2$
$4 \pi^2$
$\pi^2$
$\frac{3 \pi^2}{2}$
Explanation
$$\begin{aligned} & I=\int_0^\pi \frac{8 x}{4 \cos ^2 x+\sin ^2 x} d x \ldots(1) \\ & I=\int_0^\pi \frac{8(\pi-x)}{4 \cos ^2(\pi-x)+\sin ^2(\pi-x)} d x \\ & I=\int_0^\pi \frac{8(\pi-x)}{4 \cos ^2 x+\sin ^2 x} d x \ldots(2) \end{aligned}$$
Adding (1) and (2)
$$\begin{aligned} & 2 I=8 \pi \int_0^\pi \frac{1}{4 \cos ^2 x+\sin ^2 x} d x \\ & I=4 \pi \times 2 \int_0^\pi \frac{\sec ^2 x}{4 \tan ^2 x} d x \end{aligned}$$
Put $\tan x=t$
$$\sec ^2 x d x=d t$$
$$I=8 \pi \int_0^{\infty} \frac{d t}{4+t^2}$$
$$\begin{aligned} & I=8 \pi \frac{1}{2}\left(\tan ^{-1} \frac{t}{2}\right)_0^{\infty} \\ & I=4 \pi\left(\frac{\pi}{2}\right) \\ & I=2 \pi^2 \end{aligned}$$
Comments (0)
