JEE MAIN - Mathematics (2025 - 3rd April Evening Shift - No. 15)
If the probability that the random variable $X$ takes the value $x$ is given by
$P(X=x)=k(x+1) 3^{-x}, x=0,1,2,3 \ldots$, where $k$ is a constant, then $P(X \geq 3)$ is equal to
Explanation
To find $ P(X \geq 3) $, we first determine the constant $ k $ using the total probability for $ X $.
The probability $ P(X = x) $ is given by:
$ P(X = x) = k(x+1) \cdot 3^{-x}, \quad x = 0, 1, 2, 3, \ldots $
The total probability must equal 1:
$ s = \sum_{x = 0}^{\infty} k(x+1) \cdot 3^{-x} $
Calculating that series:
$ s = \frac{k}{3^0} + \frac{2k}{3} + \frac{3k}{3^2} + \ldots $
Therefore, dividing the series by 3:
$ \frac{s}{3} = \frac{k}{3} + \frac{2k}{3^2} + \ldots $
Subtracting these:
$ s - \frac{s}{3} = k + \frac{k}{3} + \frac{k}{3^2} + \ldots $
The resulting series is a geometric series:
$ \frac{2s}{3} = k \left( 1 + \frac{1}{3} + \frac{1}{3^2} + \ldots \right) $
The sum of the infinite geometric series is:
$ \frac{2s}{3} = k \cdot \frac{1}{1-\frac{1}{3}} = \frac{3k}{2} $
Equating:
$ s = \frac{9k}{4} = 1 $
Thus, solving for $ k $:
$ k = \frac{4}{9} $
Next, compute $ P(X \geq 3) $:
$ P(X \geq 3) = 1 - (P(X = 0) + P(X = 1) + P(X = 2)) $
Calculating these:
$ P(X = 0) = k = \frac{4}{9} $
$ P(X = 1) = \frac{2k}{3} = \frac{8}{27} $
$ P(X = 2) = \frac{3k}{9} = \frac{4}{27} $
Adding these probabilities:
$ P(X = 0) + P(X = 1) + P(X = 2) = \frac{4}{9} + \frac{8}{27} + \frac{4}{27} = \frac{8}{9} $
Finally, calculate $ P(X \geq 3) $:
$ P(X \geq 3) = 1 - \frac{8}{9} = \frac{1}{9} $
Comments (0)
