JEE MAIN - Mathematics (2024 - 4th April Morning Shift)
1
$$\text { Let } f(x)=\left\{\begin{array}{lr}
-2, & -2 \leq x \leq 0 \\
x-2, & 0< x \leq 2
\end{array} \text { and } \mathrm{h}(x)=f(|x|)+|f(x)| \text {. Then } \int_\limits{-2}^2 \mathrm{~h}(x) \mathrm{d} x\right. \text { is equal to: }$$
Answer
(A)
2
2
One of the points of intersection of the curves $$y=1+3 x-2 x^2$$ and $$y=\frac{1}{x}$$ is $$\left(\frac{1}{2}, 2\right)$$. Let the area of the region enclosed by these curves be $$\frac{1}{24}(l \sqrt{5}+\mathrm{m})-\mathrm{n} \log _{\mathrm{e}}(1+\sqrt{5})$$, where $$l, \mathrm{~m}, \mathrm{n} \in \mathbf{N}$$. Then $$l+\mathrm{m}+\mathrm{n}$$ is equal to
Answer
(A)
30
3
Let $$\alpha \in(0, \infty)$$ and $$A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$$. If $$\operatorname{det}\left(\operatorname{adj}\left(2 A-A^T\right) \cdot \operatorname{adj}\left(A-2 A^T\right)\right)=2^8$$, then $$(\operatorname{det}(A))^2$$ is equal to:
Answer
(A)
16
4
There are 5 points $$P_1, P_2, P_3, P_4, P_5$$ on the side $$A B$$, excluding $$A$$ and $$B$$, of a triangle $$A B C$$. Similarly there are 6 points $$\mathrm{P}_6, \mathrm{P}_7, \ldots, \mathrm{P}_{11}$$ on the side $$\mathrm{BC}$$ and 7 points $$\mathrm{P}_{12}, \mathrm{P}_{13}, \ldots, \mathrm{P}_{18}$$ on the side $$\mathrm{CA}$$ of the triangle. The number of triangles, that can be formed using the points $$\mathrm{P}_1, \mathrm{P}_2, \ldots, \mathrm{P}_{18}$$ as vertices, is:
Answer
(A)
751
5
A square is inscribed in the circle $$x^2+y^2-10 x-6 y+30=0$$. One side of this square is parallel to $$y=x+3$$. If $$\left(x_i, y_i\right)$$ are the vertices of the square, then $$\Sigma\left(x_i^2+y_i^2\right)$$ is equal to:
Answer
(A)
152
6
Let $$\alpha, \beta \in \mathbf{R}$$. Let the mean and the variance of 6 observations $$-3,4,7,-6, \alpha, \beta$$ be 2 and 23, respectively. The mean deviation about the mean of these 6 observations is :
Answer
(D)
$$\frac{13}{3}$$
7
Let $$f(x)=x^5+2 \mathrm{e}^{x / 4}$$ for all $$x \in \mathbf{R}$$. Consider a function $$g(x)$$ such that $$(g \circ f)(x)=x$$ for all $$x \in \mathbf{R}$$. Then the value of $$8 g^{\prime}(2)$$ is :
Answer
(C)
16
8
Let a unit vector which makes an angle of $$60^{\circ}$$ with $$2 \hat{i}+2 \hat{j}-\hat{k}$$ and an angle of $$45^{\circ}$$ with $$\hat{i}-\hat{k}$$ be $$\vec{C}$$. Then $$\vec{C}+\left(-\frac{1}{2} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{\sqrt{2}}{3} \hat{k}\right)$$ is:
If the domain of the function $$\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{\mathrm{e}}\left(\frac{3 x^2-8 x+5}{x^2-3 x-10}\right)$$ is $$(\alpha, \beta]$$, then $$3 \alpha+10 \beta$$ is equal to:
Answer
(C)
97
10
Let the point, on the line passing through the points $$P(1,-2,3)$$ and $$Q(5,-4,7)$$, farther from the origin and at a distance of 9 units from the point $$P$$, be $$(\alpha, \beta, \gamma)$$. Then $$\alpha^2+\beta^2+\gamma^2$$ is equal to :
Answer
(B)
155
11
The vertices of a triangle are $$\mathrm{A}(-1,3), \mathrm{B}(-2,2)$$ and $$\mathrm{C}(3,-1)$$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
Answer
(B)
$$x+y-(2-\sqrt{2})=0$$
12
Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn $$\mathrm{A}$$ is :
Answer
(C)
$$\frac{5}{18}$$
13
If the solution $$y=y(x)$$ of the differential equation $$(x^4+2 x^3+3 x^2+2 x+2) \mathrm{d} y-(2 x^2+2 x+3) \mathrm{d} x=0$$ satisfies $$y(-1)=-\frac{\pi}{4}$$, then $$y(0)$$ is equal to :
Answer
(D)
$$\frac{\pi}{4}$$
14
Let the first three terms 2, p and q, with $$q \neq 2$$, of a G.P. be respectively the $$7^{\text {th }}, 8^{\text {th }}$$ and $$13^{\text {th }}$$ terms of an A.P. If the $$5^{\text {th }}$$ term of the G.P. is the $$n^{\text {th }}$$ term of the A.P., then $n$ is equal to:
Answer
(C)
163
15
The sum of all rational terms in the expansion of $$\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$$ is equal to :
Answer
(C)
3133
16
If 2 and 6 are the roots of the equation $$a x^2+b x+1=0$$, then the quadratic equation, whose roots are $$\frac{1}{2 a+b}$$ and $$\frac{1}{6 a+b}$$, is :
Answer
(A)
$$x^2+8 x+12=0$$
17
Let the sum of the maximum and the minimum values of the function $$f(x)=\frac{2 x^2-3 x+8}{2 x^2+3 x+8}$$ be $$\frac{m}{n}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$. Then $$\mathrm{m}+\mathrm{n}$$ is equal to :
has a non-trivial solution, then $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ is equal to :
Answer
(A)
$$\frac{5 \pi}{24}$$
19
Let $$\alpha$$ and $$\beta$$ be the sum and the product of all the non-zero solutions of the equation $$(\bar{z})^2+|z|=0, z \in C$$. Then $$4(\alpha^2+\beta^2)$$ is equal to :
Answer
(A)
4
20
Let $$f: \mathbf{R} \rightarrow \mathbf{R}$$ be a function given by
where $$\alpha, \beta \in \mathbf{R}$$. If $$f$$ is continuous at $$x=0$$, then $$\alpha^2+\beta^2$$ is equal to :
Answer
(D)
12
21
Let the solution $$y=y(x)$$ of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}-y=1+4 \sin x$$ satisfy $$y(\pi)=1$$. Then $$y\left(\frac{\pi}{2}\right)+10$$ is equal to __________.
Answer
7
22
If the shortest distance between the lines $$\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$$ and $$\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$$ is $$\frac{38}{3 \sqrt{5}} \mathrm{k}$$, and $$\int_\limits 0^{\mathrm{k}}\left[x^2\right] \mathrm{d} x=\alpha-\sqrt{\alpha}$$, where $$[x]$$ denotes the greatest integer function, then $$6 \alpha^3$$ is equal to _________.
Answer
48
23
Let $$A$$ be a square matrix of order 2 such that $$|A|=2$$ and the sum of its diagonal elements is $$-$$3 . If the points $$(x, y)$$ satisfying $$\mathrm{A}^2+x \mathrm{~A}+y \mathrm{I}=\mathrm{O}$$ lie on a hyperbola, whose transverse axis is parallel to the $$x$$-axis, eccentricity is $$\mathrm{e}$$ and the length of the latus rectum is $$l$$, then $$\mathrm{e}^4+l^4$$ is equal to ________.
Answer
25
24
If $$\lim _\limits{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{\mathrm{m} \sqrt{5}}{\mathrm{n}(2 \mathrm{n})^{2 / 3}}$$, where $$\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$$, then $$8 \mathrm{~m}+12 \mathrm{n}$$ is equal to _______.
Answer
100
25
Let $$A$$ be a $$3 \times 3$$ matrix of non-negative real elements such that $$A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$$. Then the maximum value of $$\operatorname{det}(\mathrm{A})$$ is _________.
Answer
27
26
If $$\int_0^{\frac{\pi}{4}} \frac{\sin ^2 x}{1+\sin x \cos x} \mathrm{~d} x=\frac{1}{\mathrm{a}} \log _{\mathrm{e}}\left(\frac{\mathrm{a}}{3}\right)+\frac{\pi}{\mathrm{b} \sqrt{3}}$$, where $$\mathrm{a}, \mathrm{b} \in \mathrm{N}$$, then $$\mathrm{a}+\mathrm{b}$$ is equal to _________.
Answer
8
27
In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let $$m$$ and $$n$$ respectively be the least and the most number of students who studied all the three subjects. Then $$\mathrm{m}+\mathrm{n}$$ is equal to ___________.
Answer
45
28
Let the length of the focal chord PQ of the parabola $$y^2=12 x$$ be 15 units. If the distance of $$\mathrm{PQ}$$ from the origin is $$\mathrm{p}$$, then $$10 \mathrm{p}^2$$ is equal to __________.
Answer
72
29
Let $$\mathrm{ABC}$$ be a triangle of area $$15 \sqrt{2}$$ and the vectors $$\overrightarrow{\mathrm{AB}}=\hat{i}+2 \hat{j}-7 \hat{k}, \overrightarrow{\mathrm{BC}}=\mathrm{a} \hat{i}+\mathrm{b} \hat{j}+\mathrm{c} \hat{k}$$ and $$\overrightarrow{\mathrm{AC}}=6 \hat{i}+\mathrm{d} \hat{j}-2 \hat{k}, \mathrm{~d}>0$$. Then the square of the length of the largest side of the triangle $$\mathrm{ABC}$$ is _________.
Answer
54
30
Let $$a=1+\frac{{ }^2 \mathrm{C}_2}{3 !}+\frac{{ }^3 \mathrm{C}_2}{4 !}+\frac{{ }^4 \mathrm{C}_2}{5 !}+...., \mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1 !}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2 !}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3 !}+....$$ Then $$\frac{2 b}{a^2}$$ is equal to _________.