JEE MAIN - Mathematics (2024 - 4th April Morning Shift - No. 5)
A square is inscribed in the circle $$x^2+y^2-10 x-6 y+30=0$$. One side of this square is parallel to $$y=x+3$$. If $$\left(x_i, y_i\right)$$ are the vertices of the square, then $$\Sigma\left(x_i^2+y_i^2\right)$$ is equal to:
152
148
156
160
Explanation
One side of square is $$y=x+k$$ Distance of $$(5,3)$$ to the line $$y=x+k$$ is
$$\begin{aligned} & \frac{|3-5-k|}{\sqrt{2}}=\sqrt{2} \\ & =|-2-k|=2 \\ & \Rightarrow k=0 \text { or } k=-4 \end{aligned}$$
So lines are $$y=x$$ and $$y=x-4$$
Now, solving these lines with circle
$$\begin{aligned} y= & x \text { and } x^2+y^2-10 x-6 y+30=0 \\ \Rightarrow & 2 x^2-16 x+30=0 \\ \Rightarrow & x=3, y=3 \\ & x=5, y=5 \\ & y=x-4 \text { and } x^2+y^2-10 x-6 y+30=0 \\ \Rightarrow & x=5, y=1 \\ & x=7, y=3 \\ & \sum_{i=1}^4 x_i^2+y_i^2=9+9+25+25+25+1+49+9 \\ = & 152 \end{aligned}$$
Comments (0)
