JEE MAIN - Mathematics (2024 - 4th April Morning Shift - No. 30)
Explanation
$$\begin{aligned} & a=1+\frac{{ }^2 C_2}{3!}+\frac{{ }^3 C_2}{4!}+\frac{{ }^4 C_2}{5!}+\ldots \\ & b=1+\frac{{ }^1 C_0+{ }^1 C_1}{1!}+\frac{{ }^2 C_0+{ }^2 C_1+{ }^2 C_2}{2!}+\ldots \\ & b=1+\frac{2}{1!}+\frac{2^2}{2!}+\frac{2}{3!}+\ldots=e^2 \end{aligned}$$
Using $$e^x=1+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x}{3!}+\ldots$$
$$\begin{aligned} a= & 1+\sum_{r=2}^{\infty} \frac{{ }^r C_2}{(r+1)!}=1+\sum_{r=2} \frac{r(r-1)}{2(r+1)!} \\ & =1+\frac{1}{2} \sum_{r=2}^{\infty} \frac{(r+1) r-2 r}{(r+1)!} \\ & =1+\frac{1}{2} \sum_{r=2}^{\infty} \frac{1}{(r-1)!}-\frac{1}{2} \sum_{r=2} \frac{2 r}{(r+1)!} \\ & =1+\frac{1}{2}\left(\frac{1}{1!}+\frac{1}{2!}+\ldots\right)-\sum_{r=2}^{\infty} \frac{(r+1)-1}{(r+1)!} \\ & =1+\frac{1}{2}(e-1)-\sum_{r=2}^{\infty} \frac{1}{r!}+\sum_{r=2} \frac{1}{(r+1)!} \\ & =1+\frac{1}{2}(e-1)-\left(e-\frac{1}{1!}-\frac{1}{0!}\right)+\left(e-\frac{1}{1!}-\frac{1}{0!}-\frac{1}{2!}\right) \\ & =1+\frac{e}{2}-\frac{1}{2}-e+2+e-2-\frac{1}{2}=\frac{e}{2} \\ \Rightarrow & \frac{2 b}{a^2}=\frac{2}{\frac{e^2}{4}} 8 \end{aligned}$$
Comments (0)
