JEE MAIN - Mathematics (2023 - 12th April Morning Shift)
1
Two dice A and B are rolled. Let the numbers obtained on A and B be $$\alpha$$ and $$\beta$$ respectively. If the variance of $$\alpha-\beta$$ is $$\frac{p}{q}$$, where $$p$$ and $$q$$ are co-prime, then the sum of the positive divisors of $$p$$ is equal to :
Answer
(A)
48
2
Let $$A=\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]$$. If $$\mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right] A\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$$, then the sum of all the elements of the matrix $$\sum_\limits{n=1}^{50} B^{n}$$ is equal to
Answer
(C)
100
3
Let $$y=y(x), y > 0$$, be a solution curve of the differential equation $$\left(1+x^{2}\right) \mathrm{d} y=y(x-y) \mathrm{d} x$$. If $$y(0)=1$$ and $$y(2 \sqrt{2})=\beta$$, then
Answer
(C)
$$e^{3 \beta^{-1}}=e(3+2 \sqrt{2})$$
4
Let the lines $$l_{1}: \frac{x+5}{3}=\frac{y+4}{1}=\frac{z-\alpha}{-2}$$ and $$l_{2}: 3 x+2 y+z-2=0=x-3 y+2 z-13$$ be coplanar. If the point $$\mathrm{P}(a, b, c)$$ on $$l_{1}$$ is nearest to the point $$\mathrm{Q}(-4,-3,2)$$, then $$|a|+|b|+|c|$$ is equal to
Answer
(C)
10
5
The number of five digit numbers, greater than 40000 and divisible by 5 , which can be formed using the digits $$0,1,3,5,7$$ and 9 without repetition, is equal to :
Answer
(C)
120
6
Let $$\mathrm{C}$$ be the circle in the complex plane with centre $$\mathrm{z}_{0}=\frac{1}{2}(1+3 i)$$ and radius $$r=1$$. Let $$\mathrm{z}_{1}=1+\mathrm{i}$$ and the complex number $$z_{2}$$ be outside the circle $$C$$ such that $$\left|z_{1}-z_{0}\right|\left|z_{2}-z_{0}\right|=1$$. If $$z_{0}, z_{1}$$ and $$z_{2}$$ are collinear, then the smaller value of $$\left|z_{2}\right|^{2}$$ is equal to :
Answer
(B)
$$\frac{5}{2}$$
7
If the point $$\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$$ lies on the curve traced by the mid-points of the line segments of the lines $$x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$$ between the co-ordinates axes, then $$\alpha$$ is equal to :
Answer
(B)
7
8
Let $$\alpha, \beta$$ be the roots of the quadratic equation $$x^{2}+\sqrt{6} x+3=0$$. Then $$\frac{\alpha^{23}+\beta^{23}+\alpha^{14}+\beta^{14}}{\alpha^{15}+\beta^{15}+\alpha^{10}+\beta^{10}}$$ is equal to :
Answer
(D)
81
9
Let $$\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$$ and $$\mathrm{S}$$ be four points on the ellipse $$9 x^{2}+4 y^{2}=36$$. Let $$\mathrm{PQ}$$ and $$\mathrm{RS}$$ be mutually perpendicular and pass through the origin. If $$\frac{1}{(P Q)^{2}}+\frac{1}{(R S)^{2}}=\frac{p}{q}$$, where $$p$$ and $$q$$ are coprime, then $$p+q$$ is equal to :
Answer
(D)
157
10
If the local maximum value of the function $$f(x)=\left(\frac{\sqrt{3 e}}{2 \sin x}\right)^{\sin ^{2} x}, x \in\left(0, \frac{\pi}{2}\right)$$ , is $$\frac{k}{e}$$, then $$\left(\frac{k}{e}\right)^{8}+\frac{k^{8}}{e^{5}}+k^{8}$$ is equal to
Answer
(C)
$$e^{3}+e^{6}+e^{11}$$
11
The area of the region enclosed by the curve $$y=x^{3}$$ and its tangent at the point $$(-1,-1)$$ is :
Answer
(C)
$$\frac{27}{4}$$
12
Let $$\mathrm{D}$$ be the domain of the function $$f(x)=\sin ^{-1}\left(\log _{3 x}\left(\frac{6+2 \log _{3} x}{-5 x}\right)\right)$$. If the range of the function $$\mathrm{g}: \mathrm{D} \rightarrow \mathbb{R}$$ defined by $$\mathrm{g}(x)=x-[x],([x]$$ is the greatest integer function), is $$(\alpha, \beta)$$, then $$\alpha^{2}+\frac{5}{\beta}$$ is equal to
Answer
(D)
nearly 135
13
Let $$\mathrm{D}_{\mathrm{k}}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\
n & n^{2}+n+2 & n^{2} \\
n & n^{2}+n & n^{2}+n+2\end{array}\right|$$. If $$\sum_\limits{k=1}^{n} \mathrm{D}_{\mathrm{k}}=96$$, then $$n$$ is equal to _____________.
Answer
6
14
Let the digits a, b, c be in A. P. Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in A.P. at least once. How many such numbers can be formed?
Answer
1260
15
Two circles in the first quadrant of radii $$r_{1}$$ and $$r_{2}$$ touch the coordinate axes. Each of them cuts off an intercept of 2 units with the line $$x+y=2$$. Then $$r_{1}^{2}+r_{2}^{2}-r_{1} r_{2}$$ is equal to ___________.
Answer
7
16
A fair $$n(n > 1)$$ faces die is rolled repeatedly until a number less than $$n$$ appears. If the mean of the number of tosses required is $$\frac{n}{9}$$, then $$n$$ is equal to ____________.
Answer
10
17
If $$\int_\limits{-0.15}^{0.15}\left|100 x^{2}-1\right| d x=\frac{k}{3000}$$, then $$k$$ is equal to ___________.
Answer
575
18
The number of relations, on the set $$\{1,2,3\}$$ containing $$(1,2)$$ and $$(2,3)$$, which are reflexive and transitive but not symmetric, is __________.
Answer
3
19
Let $$[x]$$ be the greatest integer $$\leq x$$. Then the number of points in the interval $$(-2,1)$$, where the function $$f(x)=|[x]|+\sqrt{x-[x]}$$ is discontinuous, is ___________.
Answer
2
20
Let the positive numbers $$a_{1}, a_{2}, a_{3}, a_{4}$$ and $$a_{5}$$ be in a G.P. Let their mean and variance be $$\frac{31}{10}$$ and $$\frac{m}{n}$$ respectively, where $$m$$ and $$n$$ are co-prime. If the mean of their reciprocals is $$\frac{31}{40}$$ and $$a_{3}+a_{4}+a_{5}=14$$, then $$m+n$$ is equal to ___________.
Answer
211
21
Let $$I(x)=\int \sqrt{\frac{x+7}{x}} \mathrm{~d} x$$ and $$I(9)=12+7 \log _{e} 7$$. If $$I(1)=\alpha+7 \log _{e}(1+2 \sqrt{2})$$, then $$\alpha^{4}$$ is equal to _________.