JEE MAIN - Mathematics (2023 - 12th April Morning Shift - No. 21)
Explanation
Let's make the substitution $$x = t^2$$. Then, $$dx = 2t \, dt$$.
Substituting these values, the integral becomes :
$$\int 2 \sqrt{t^2 + 7} \, dt$$
Now, let's evaluate this integral :
$$I(t) = 2\left(\frac{t}{2} \sqrt{t^2+7} + \frac{7}{2} \ln\left|t + \sqrt{t^2+7}\right|\right) + C$$
Substituting back $$t = \sqrt{x}$$, we have :
$$I(x) = 2\left(\frac{\sqrt{x}}{2} \sqrt{x+7} + \frac{7}{2} \ln\left|\sqrt{x} + \sqrt{x+7}\right|\right) + C$$
Simplifying further :
$$I(x) = \sqrt{x} \sqrt{x+7} + 7 \ln\left|\sqrt{x} + \sqrt{x+7}\right| + C$$
We are given that $$I(9) = 12+7 \ln 7$$.
Let's substitute $$x = 9$$ and solve for the constant $$C$$:
$$12+7 \ln 7 = \sqrt{9} \sqrt{9+7}+7 \ln |\sqrt{9}+\sqrt{9+7}|+C$$
$$ \Rightarrow $$ $$12+7 \ln 7 = 3 \sqrt{16}+7 \ln |\sqrt{9}+\sqrt{16}|+C$$
$$ \Rightarrow $$ $$12+7 \ln 7 = 3 \cdot 4+7 \ln (3+\sqrt{16})+C$$
$$ \Rightarrow $$ $$12+7 \ln 7 = 12+7 \ln (3+4)+C$$
$$ \Rightarrow $$ $$12+7 \ln 7 = 12+7 \ln 7+C$$
From this equation, we can see that $$C = 0$$.
Now, we need to calculate $$I(1)$$ :
$$I(1) = \sqrt{1} \sqrt{1+7}+7 \ln |\sqrt{1}+\sqrt{1+7}|$$
$$ \Rightarrow $$ $$I(1) = 1 \sqrt{8}+7 \ln (1+\sqrt{8})$$
$$ \Rightarrow $$ $$I(1) = \sqrt{8}+7 \ln (1+2 \sqrt{2})$$
Therefore, $$\alpha = \sqrt{8}$$.
Finally, to find $$\alpha^4$$:
$$\alpha^4 = \left(\sqrt{8}\right)^4$$
$$ \Rightarrow $$ $$\alpha^4 = 8^2$$
$$ \Rightarrow $$ $$\alpha^4 = 64$$
Hence, $$\alpha^4$$ is equal to 64.
Comments (0)
