JEE MAIN - Mathematics (2023 - 12th April Morning Shift - No. 11)
The area of the region enclosed by the curve $$y=x^{3}$$ and its tangent at the point $$(-1,-1)$$ is :
$$\frac{23}{4}$$
$$\frac{19}{4}$$
$$\frac{27}{4}$$
$$\frac{31}{4}$$
Explanation
_12th_April_Morning_Shift_en_11_1.png)
Given $y=x^3$
$$ \begin{aligned} & \Rightarrow \frac{d y}{d x}=3 x^2 \\\\ & \left(\frac{d y}{d x}\right)_{(-1,-1)}=3 \end{aligned} $$
Equation of tangent at $(-1,-1)$
$$ \begin{aligned} & (y+1)=3(x+1) \\\\ & y=3 x+2 \end{aligned} $$
Solving (i) and (ii)
$$ x^3=3 x+2 $$
We can rewrite this as $x^3 - 3x - 2 = 0$. This equation will give us the x-coordinates of the points where the line $y = 3x + 2$ intersects the curve $y = x^3$. We already know that one point of intersection is $(-1, -1)$ (as it's a point of tangency).
To find the other points of intersection, we can solve the cubic equation $x^3 - 3x - 2 = 0$.
Let's factor this equation:
$x^3 - 3x - 2 = 0 \Rightarrow (x + 1)(x + 1)(x - 2) = 0$.
Setting each factor equal to zero gives the solutions $x = -1, -1, 2$.
$$ \therefore $$ Other point is $Q(2,8)$.
We have the required area as $$ \int_{-1}^{2} (3x + 2 - x^3) \, dx = \left[ \frac{3}{2}x^2 + 2x - \frac{1}{4}x^4 \right]_{-1}^{2}. $$
Evaluating this at $x = 2$ and $x = -1$ gives
$$ \left[ \frac{3}{2} \cdot (2)^2 + 2 \cdot 2 - \frac{1}{4} \cdot (2)^4 \right] - \left[ \frac{3}{2} \cdot (-1)^2 + 2 \cdot (-1) - \frac{1}{4} \cdot (-1)^4 \right] $$
$$ = \left[ 6 + 4 - 4 \right] - \left[ \frac{3}{2} - 2 - \frac{1}{4} \right] $$
$$ = 6 - \left( \frac{1}{4} \right) $$
$$ = \frac{27}{4} $$
Comments (0)
