JEE MAIN - Mathematics (2023 - 12th April Morning Shift - No. 13)

Let $$\mathrm{D}_{\mathrm{k}}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$$. If $$\sum_\limits{k=1}^{n} \mathrm{D}_{\mathrm{k}}=96$$, then $$n$$ is equal to _____________.
Answer
6

Explanation

$$ \begin{aligned} & \sum_{k=1}^n D_k=\left|\begin{array}{ccc} \sum 1 & 2 \sum k & 2 \sum k-\sum 1 \\ n & n^2+n+2 & n^2 \\ n & n^2+n & n^2+n+2 \end{array}\right| \\\\ & =\left|\begin{array}{ccc} n & n(n+1) & n^2 \\ n & n^2+n+2 & n^2 \\ n & n^2+n & n^2+n+2 \end{array}\right| \\\\ & =\left|\begin{array}{ccc} 0 & -2 & 0 \\ 0 & 2 & -n-2 \\ n & n^2+n & n^2+n+2 \end{array}\right| \\\\ & =2((-n)(-n-2))=96 \\\\ & \Rightarrow n^2+2 n=48 \\\\ & \Rightarrow n=6,-8 \\\\ & \Rightarrow n=6 \end{aligned} $$

Comments (0)

Advertisement