JEE MAIN - Mathematics (2022 - 29th June Evening Shift)

1
Let $$\alpha$$ be a root of the equation 1 + x2 + x4 = 0. Then, the value of $$\alpha$$1011 + $$\alpha$$2022 $$-$$ $$\alpha$$3033 is equal to :
Answer
(A)
1
2
Let arg(z) represent the principal argument of the complex number z. Then, |z| = 3 and arg(z $$-$$ 1) $$-$$ arg(z + 1) = $${\pi \over 4}$$ intersect :
Answer
(C)
nowhere.
3
The value of $$\mathop {\lim }\limits_{x \to 1} {{({x^2} - 1){{\sin }^2}(\pi x)} \over {{x^4} - 2{x^3} + 2x - 1}}$$ is equal to:
Answer
(D)
$$\pi$$2
4

Let f be a real valued continuous function on [0, 1] and $$f(x) = x + \int\limits_0^1 {(x - t)f(t)dt} $$.

Then, which of the following points (x, y) lies on the curve y = f(x) ?

Answer
(D)
(6, 8)
5
If $$\int\limits_0^2 {\left( {\sqrt {2x} - \sqrt {2x - {x^2}} } \right)dx = \int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} - {{{y^2}} \over 2}} \right)dy + \int\limits_1^2 {\left( {2 - {{{y^2}} \over 2}} \right)dy + I} } } $$, then I equals
Answer
(C)
$$\int\limits_0^1 {\left( {1 - \sqrt {1 - {y^2}} } \right)dy} $$
6
If y = y(x) is the solution of the differential equation $$\left( {1 + {e^{2x}}} \right){{dy} \over {dx}} + 2\left( {1 + {y^2}} \right){e^x} = 0$$ and y (0) = 0, then $$6\left( {y'(0) + {{\left( {y\left( {{{\log }_e}\sqrt 3 } \right)} \right)}^2}} \right)$$ is equal to
Answer
(C)
$$-$$4
7
Let a triangle ABC be inscribed in the circle $${x^2} - \sqrt 2 (x + y) + {y^2} = 0$$ such that $$\angle BAC = {\pi \over 2}$$. If the length of side AB is $$\sqrt 2 $$, then the area of the $$\Delta$$ABC is equal to :
Answer
(A)
1
8
The distance of the origin from the centroid of the triangle whose two sides have the equations $$x - 2y + 1 = 0$$ and $$2x - y - 1 = 0$$ and whose orthocenter is $$\left( {{7 \over 3},{7 \over 3}} \right)$$ is :
Answer
(C)
2$$\sqrt 2 $$
9
Let A, B, C be three points whose position vectors respectively are

$$\overrightarrow a = \widehat i + 4\widehat j + 3\widehat k$$

$$\overrightarrow b = 2\widehat i + \alpha \widehat j + 4\widehat k,\,\alpha \in R$$

$$\overrightarrow c = 3\widehat i - 2\widehat j + 5\widehat k$$

If $$\alpha$$ is the smallest positive integer for which $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are noncollinear, then the length of the median, in $$\Delta$$ABC, through A is :

Answer
(A)
$${{\sqrt {82} } \over 2}$$
10
The probability that a relation R from {x, y} to {x, y} is both symmetric and transitive, is equal to :
Answer
(A)
$${5 \over {16}}$$
11
The number of values of a $$\in$$ N such that the variance of 3, 7, 12, a, 43 $$-$$ a is a natural number is :
Answer
(A)
0
12
Let  $$\overrightarrow a = \widehat i - 2\widehat j + 3\widehat k$$,   $$\overrightarrow b = \widehat i + \widehat j + \widehat k$$   and   $$\overrightarrow c $$   be a vector such that   $$\overrightarrow a + \left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow 0 $$   and   $$\overrightarrow b \,.\,\overrightarrow c = 5$$. Then the value of   $$3\left( {\overrightarrow c \,.\,\overrightarrow a } \right)$$   is equal to _________.
Answer
BONUS
13
Let y = y(x), x > 1, be the solution of the differential equation $$(x - 1){{dy} \over {dx}} + 2xy = {1 \over {x - 1}}$$, with $$y(2) = {{1 + {e^4}} \over {2{e^4}}}$$. If $$y(3) = {{{e^\alpha } + 1} \over {\beta {e^\alpha }}}$$, then the value of $$\alpha + \beta $$ is equal to _________.
Answer
14
14
Let 3, 6, 9, 12, ....... upto 78 terms and 5, 9, 13, 17, ...... upto 59 terms be two series. Then, the sum of the terms common to both the series is equal to ________.
Answer
2223
15

For real numbers a, b (a > b > 0), let

Area $$\left\{ {(x,y):{x^2} + {y^2} \le {a^2}\,and\,{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} \ge 1} \right\} = 30\pi $$

and

Area $$\left\{ {(x,y):{x^2} + {y^2} \le {b^2}\,and\,{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} \le 1} \right\} = 18\pi $$

Then, the value of (a $$-$$ b)2 is equal to ___________.

Answer
12
16
Let f and g be twice differentiable even functions on ($$-$$2, 2) such that $$f\left( {{1 \over 4}} \right) = 0$$, $$f\left( {{1 \over 2}} \right) = 0$$, $$f(1) = 1$$ and $$g\left( {{3 \over 4}} \right) = 0$$, $$g(1) = 2$$. Then, the minimum number of solutions of $$f(x)g''(x) + f'(x)g'(x) = 0$$ in $$( - 2,2)$$ is equal to ________.
Answer
4
17
Let the coefficients of x$$-$$1 and x$$-$$3 in the expansion of $${\left( {2{x^{{1 \over 5}}} - {1 \over {{x^{{1 \over 5}}}}}} \right)^{15}},x > 0$$, be m and n respectively. If r is a positive integer such that $$m{n^2} = {}^{15}{C_r}\,.\,{2^r}$$, then the value of r is equal to __________.
Answer
5
18
The total number of four digit numbers such that each of first three digits is divisible by the last digit, is equal to ____________.
Answer
1086
19
Let $$M = \left[ {\matrix{ 0 & { - \alpha } \cr \alpha & 0 \cr } } \right]$$, where $$\alpha$$ is a non-zero real number an $$N = \sum\limits_{k = 1}^{49} {{M^{2k}}} $$. If $$(I - {M^2})N = - 2I$$, then the positive integral value of $$\alpha$$ is ____________.
Answer
1
20
Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If $$f(g(x)) = 8{x^2} - 2x$$ and $$g(f(x)) = 4{x^2} + 6x + 1$$, then the value of $$f(2) + g(2)$$ is _________.
Answer
18